Unverified Commit f7fae490 authored by Vasilis Vryniotis's avatar Vasilis Vryniotis Committed by GitHub
Browse files

Static analysis improvements python (#3263)

* Simplify code and remove used vars.

* Simplify expressions and remove used parenthesis.

* Jit fixes.

* Making check more readable.

* fixing styles
parent bf211dac
......@@ -471,8 +471,8 @@ def read_sn3_pascalvincent_tensor(path: Union[str, IO], strict: bool = True) ->
magic = get_int(data[0:4])
nd = magic % 256
ty = magic // 256
assert nd >= 1 and nd <= 3
assert ty >= 8 and ty <= 14
assert 1 <= nd <= 3
assert 8 <= ty <= 14
m = SN3_PASCALVINCENT_TYPEMAP[ty]
s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
......
......@@ -192,7 +192,6 @@ def read_info_file(data_dir: str, info_file: str) -> torch.Tensor:
"""Return a Tensor containing the list of labels
Read the file and keep only the ID of the 3D point.
"""
labels = []
with open(os.path.join(data_dir, info_file), 'r') as f:
labels = [int(line.split()[0]) for line in f]
return torch.LongTensor(labels)
......
......@@ -303,7 +303,7 @@ def _read_video_timestamps_from_file(filename):
1, # audio_timebase_den
)
_vframes, vframe_pts, vtimebase, vfps, vduration, \
_aframes, aframe_pts, atimebase, asample_rate, aduration = (result)
_aframes, aframe_pts, atimebase, asample_rate, aduration = result
info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
vframe_pts = vframe_pts.numpy().tolist()
......
......@@ -87,7 +87,7 @@ def resnet_fpn_backbone(
norm_layer=norm_layer)
# select layers that wont be frozen
assert trainable_layers <= 5 and trainable_layers >= 0
assert 0 <= trainable_layers <= 5
layers_to_train = ['layer4', 'layer3', 'layer2', 'layer1', 'conv1'][:trainable_layers]
# freeze layers only if pretrained backbone is used
for name, parameter in backbone.named_parameters():
......
......@@ -106,6 +106,6 @@ class GeneralizedRCNN(nn.Module):
if not self._has_warned:
warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")
self._has_warned = True
return (losses, detections)
return losses, detections
else:
return self.eager_outputs(losses, detections)
......@@ -190,7 +190,7 @@ def _onnx_heatmaps_to_keypoints(maps, maps_i, roi_map_width, roi_map_height,
xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32)
xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32)
xy_preds_i_2 = torch.ones((xy_preds_i_1.shape), dtype=torch.float32)
xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32)
xy_preds_i = torch.stack([xy_preds_i_0.to(dtype=torch.float32),
xy_preds_i_1.to(dtype=torch.float32),
xy_preds_i_2.to(dtype=torch.float32)], 0)
......@@ -795,7 +795,6 @@ class RoIHeads(nn.Module):
mask_features = self.mask_head(mask_features)
mask_logits = self.mask_predictor(mask_features)
else:
mask_logits = torch.tensor(0)
raise Exception("Expected mask_roi_pool to be not None")
loss_mask = {}
......
......@@ -30,7 +30,7 @@ class Conv3DSimple(nn.Conv3d):
@staticmethod
def get_downsample_stride(stride):
return (stride, stride, stride)
return stride, stride, stride
class Conv2Plus1D(nn.Sequential):
......@@ -53,7 +53,7 @@ class Conv2Plus1D(nn.Sequential):
@staticmethod
def get_downsample_stride(stride):
return (stride, stride, stride)
return stride, stride, stride
class Conv3DNoTemporal(nn.Conv3d):
......@@ -75,7 +75,7 @@ class Conv3DNoTemporal(nn.Conv3d):
@staticmethod
def get_downsample_stride(stride):
return (1, stride, stride)
return 1, stride, stride
class BasicBlock(nn.Module):
......
......@@ -99,9 +99,7 @@ class FeaturePyramidNetwork(nn.Module):
This is equivalent to self.inner_blocks[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = 0
for m in self.inner_blocks:
num_blocks += 1
num_blocks = len(self.inner_blocks)
if idx < 0:
idx += num_blocks
i = 0
......@@ -117,9 +115,7 @@ class FeaturePyramidNetwork(nn.Module):
This is equivalent to self.layer_blocks[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = 0
for m in self.layer_blocks:
num_blocks += 1
num_blocks = len(self.layer_blocks)
if idx < 0:
idx += num_blocks
i = 0
......
......@@ -45,7 +45,7 @@ def _max_value(dtype: torch.dtype) -> float:
max_value = next_value
bits *= 2
else:
return max_value.item()
break
return max_value.item()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment