Unverified Commit f3365262 authored by Vasilis Vryniotis's avatar Vasilis Vryniotis Committed by GitHub
Browse files

Stop detection models from downloading the backbone weights (#4929)

* Stop detection models from downloading the backbone weights

* Fix linter
parent 1de53bef
...@@ -99,7 +99,9 @@ class TestModelsDetectionNegativeSamples: ...@@ -99,7 +99,9 @@ class TestModelsDetectionNegativeSamples:
], ],
) )
def test_forward_negative_sample_frcnn(self, name): def test_forward_negative_sample_frcnn(self, name):
model = torchvision.models.detection.__dict__[name](num_classes=2, min_size=100, max_size=100) model = torchvision.models.detection.__dict__[name](
num_classes=2, min_size=100, max_size=100, pretrained_backbone=False
)
images, targets = self._make_empty_sample() images, targets = self._make_empty_sample()
loss_dict = model(images, targets) loss_dict = model(images, targets)
...@@ -108,7 +110,9 @@ class TestModelsDetectionNegativeSamples: ...@@ -108,7 +110,9 @@ class TestModelsDetectionNegativeSamples:
assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0)) assert_equal(loss_dict["loss_rpn_box_reg"], torch.tensor(0.0))
def test_forward_negative_sample_mrcnn(self): def test_forward_negative_sample_mrcnn(self):
model = torchvision.models.detection.maskrcnn_resnet50_fpn(num_classes=2, min_size=100, max_size=100) model = torchvision.models.detection.maskrcnn_resnet50_fpn(
num_classes=2, min_size=100, max_size=100, pretrained_backbone=False
)
images, targets = self._make_empty_sample(add_masks=True) images, targets = self._make_empty_sample(add_masks=True)
loss_dict = model(images, targets) loss_dict = model(images, targets)
...@@ -118,7 +122,9 @@ class TestModelsDetectionNegativeSamples: ...@@ -118,7 +122,9 @@ class TestModelsDetectionNegativeSamples:
assert_equal(loss_dict["loss_mask"], torch.tensor(0.0)) assert_equal(loss_dict["loss_mask"], torch.tensor(0.0))
def test_forward_negative_sample_krcnn(self): def test_forward_negative_sample_krcnn(self):
model = torchvision.models.detection.keypointrcnn_resnet50_fpn(num_classes=2, min_size=100, max_size=100) model = torchvision.models.detection.keypointrcnn_resnet50_fpn(
num_classes=2, min_size=100, max_size=100, pretrained_backbone=False
)
images, targets = self._make_empty_sample(add_keypoints=True) images, targets = self._make_empty_sample(add_keypoints=True)
loss_dict = model(images, targets) loss_dict = model(images, targets)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment