"src/git@developer.sourcefind.cn:one/TransferBench.git" did not exist on "437b6e702fda37aa8d1e230601c85e989f858a8c"
Commit eeacb39b authored by Soumith Chintala's avatar Soumith Chintala Committed by GitHub
Browse files

Merge pull request #7 from pytorch/pad

adding padding to RandomCrop, as well as transforms.Pad
parents 4d247b08 685799bf
...@@ -177,10 +177,11 @@ Crops the given PIL.Image at the center to have a region of ...@@ -177,10 +177,11 @@ Crops the given PIL.Image at the center to have a region of
the given size. size can be a tuple (target_height, target_width) the given size. size can be a tuple (target_height, target_width)
or an integer, in which case the target will be of a square shape (size, size) or an integer, in which case the target will be of a square shape (size, size)
### `RandomCrop(size)` ### `RandomCrop(size, padding=0)`
Crops the given PIL.Image at a random location to have a region of Crops the given PIL.Image at a random location to have a region of
the given size. size can be a tuple (target_height, target_width) the given size. size can be a tuple (target_height, target_width)
or an integer, in which case the target will be of a square shape (size, size) or an integer, in which case the target will be of a square shape (size, size)
If `padding` is non-zero, then the image is first zero-padded on each side with `padding` pixels.
### `RandomHorizontalFlip()` ### `RandomHorizontalFlip()`
Randomly horizontally flips the given PIL.Image with a probability of 0.5 Randomly horizontally flips the given PIL.Image with a probability of 0.5
...@@ -193,6 +194,12 @@ This is popularly used to train the Inception networks ...@@ -193,6 +194,12 @@ This is popularly used to train the Inception networks
- size: size of the smaller edge - size: size of the smaller edge
- interpolation: Default: PIL.Image.BILINEAR - interpolation: Default: PIL.Image.BILINEAR
### `Pad(padding, fill=0)`
Pads the given image on each side with `padding` number of pixels, and the padding pixels are filled with
pixel value `fill`.
If a `5x5` image is padded with `padding=1` then it becomes `7x7`
## Transforms on torch.*Tensor ## Transforms on torch.*Tensor
### `Normalize(mean, std)` ### `Normalize(mean, std)`
......
This diff is collapsed.
...@@ -81,6 +81,29 @@ class Tester(unittest.TestCase): ...@@ -81,6 +81,29 @@ class Tester(unittest.TestCase):
assert result.size(1) == oheight assert result.size(1) == oheight
assert result.size(2) == owidth assert result.size(2) == owidth
padding = random.randint(1, 20)
result = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomCrop((oheight, owidth), padding=padding),
transforms.ToTensor(),
])(img)
assert result.size(1) == oheight
assert result.size(2) == owidth
def test_pad(self):
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
img = torch.ones(3, height, width)
padding = random.randint(1, 20)
result = transforms.Compose([
transforms.ToPILImage(),
transforms.Pad(padding),
transforms.ToTensor(),
])(img)
print(height, width, padding)
print(result.size(1), result.size(2))
assert result.size(1) == height + 2*padding
assert result.size(2) == width + 2*padding
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -2,7 +2,7 @@ from __future__ import division ...@@ -2,7 +2,7 @@ from __future__ import division
import torch import torch
import math import math
import random import random
from PIL import Image from PIL import Image, ImageOps
import numpy as np import numpy as np
import numbers import numbers
...@@ -115,6 +115,18 @@ class CenterCrop(object): ...@@ -115,6 +115,18 @@ class CenterCrop(object):
return img.crop((x1, y1, x1 + tw, y1 + th)) return img.crop((x1, y1, x1 + tw, y1 + th))
class Pad(object):
"""Pads the given PIL.Image on all sides with the given "pad" value"""
def __init__(self, padding, fill=0):
assert isinstance(padding, numbers.Number)
assert isinstance(fill, numbers.Number)
self.padding = padding
self.fill = fill
def __call__(self, img):
return ImageOps.expand(img, border=self.padding, fill=self.fill)
class RandomCrop(object): class RandomCrop(object):
"""Crops the given PIL.Image at a random location to have a region of """Crops the given PIL.Image at a random location to have a region of
the given size. size can be a tuple (target_height, target_width) the given size. size can be a tuple (target_height, target_width)
...@@ -129,7 +141,7 @@ class RandomCrop(object): ...@@ -129,7 +141,7 @@ class RandomCrop(object):
def __call__(self, img): def __call__(self, img):
if self.padding > 0: if self.padding > 0:
raise NotImplementedError() img = ImageOps.expand(img, border=self.padding, fill=0)
w, h = img.size w, h = img.size
th, tw = self.size th, tw = self.size
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment