Unverified Commit dc3ac290 authored by Francisco Massa's avatar Francisco Massa Committed by GitHub
Browse files

Add C++ ops to torchvision (#826)

* Initial layout for layers with cpp extensions

* Move files around

* Fix import after move

* Add support for multiple types to ROIAlign

* Different organization

CUDA extensions work now

* Cleanups

* Reduce memory requirements for backwards

* Replace runtime_error by AT_ERROR

* Add nms test

* Add support for compilation using CPP extensions

* Change folder structure

* Add ROIPool cuda

* Cleanups

* Add roi_pool.py

* Fix lint

* Add initial structures folder for bounding boxes

* Assertion macros compatible with pytorch master (#540)

* Support for ROI Pooling (#592)

* ROI Pooling with tests. Fix for cuda context in ROI Align.

* renamed bottom and top to follow torch conventions

* remove .type().tensor() calls in favor of the new approach to tensor initialization (#626)

* Consistent naming for rois variable (#627)

* remove .type().tensor() calls in favor of the new approach to tensor initialization

* Consistent naming for rois variable in ROIPool

* ROIPool: Support for all datatypes (#632)

* Use of torch7 naming scheme for ROIAlign forward and backward

* use common cuda helpers in ROIAlign

* use .options() in favor of .type() where applicable

* Added tests for forward pass of ROIAlign, as well as more consistent naming scheme for CPU vs CUDA

* working ROIAlign cuda backwards pass

* working ROIAlign backwards pass for CPU

* added relevant headers for ROIAlign backwards

* tests for ROIAlign layer

* replace .type() with .options() for tensor initialization in ROIAlign layers

* support for Half types in ROIAlign

* gradcheck tests for ROIAlign

* updated ROIPool on CPU to work with all datatypes

* updated and cleaned tests for ROI Pooling

* Fix rebase problem

* Remove structures folder

* Improve cleanup and bugfix in test_layers

* Update C++ headers

* Add CUDAGuard to cu files

* Add more checks to layers

* Add CUDA NMS and tests

* Add multi-type support for NMS CUDA

* Avoid using THCudaMalloc

* Add clang-format and reformat c++ code

* Remove THC includes

* Rename layers to ops

* Add documentation and rename functions

* Improve the documentation a bit

* Fix some lint errors

* Fix remaining lint inssues

* Area computation doesn't add +1 in NMS

* Update CI to use PyTorch nightly

* Make NMS return indices sorted according to the score

* Address reviewer comments

* Lint fixes

* Improve doc for roi_align and roi_pool

* move to xenial

* Fix bug pointed by @lopuhin

* Fix RoIPool reference implementation in Python 2

Also fixes a bug in the clip_boxes_to_image -- this function needs a test!

* Remove change in .travis
parent 0564df43
---
AccessModifierOffset: -1
AlignAfterOpenBracket: AlwaysBreak
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignEscapedNewlinesLeft: true
AlignOperands: false
AlignTrailingComments: false
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: Empty
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: true
BinPackArguments: false
BinPackParameters: false
BraceWrapping:
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
BeforeCatch: false
BeforeElse: false
IndentBraces: false
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Attach
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: false
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
#CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DerivePointerAlignment: false
DisableFormat: false
ForEachMacros: [ FOR_EACH_RANGE, FOR_EACH, ]
IncludeCategories:
- Regex: '^<.*\.h(pp)?>'
Priority: 1
- Regex: '^<.*'
Priority: 2
- Regex: '.*'
Priority: 3
IndentCaseLabels: true
IndentWidth: 2
IndentWrappedFunctionNames: false
KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBlockIndentWidth: 2
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: false
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 2000000
PointerAlignment: Left
ReflowComments: true
SortIncludes: true
SpaceAfterCStyleCast: false
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
Standard: Cpp11
TabWidth: 8
UseTab: Never
...
......@@ -3,10 +3,19 @@ dist/
torchvision.egg-info/
torchvision/version.py
*/**/__pycache__
*/__pycache__
*/*.pyc
*/**/*.pyc
*/**/**/*.pyc
*/**/*~
*~
docs/build
.coverage
htmlcov
.*.swp
*.so*
*.dylib*
*/*.so*
*/*.dylib*
*.swp
*.swo
......@@ -6,6 +6,12 @@ import sys
from setuptools import setup, find_packages
from pkg_resources import get_distribution, DistributionNotFound
import subprocess
import distutils.command.clean
import glob
import shutil
import torch
from torch.utils.cpp_extension import CppExtension, CUDAExtension, CUDA_HOME
def read(*names, **kwargs):
......@@ -69,6 +75,55 @@ pillow_req = 'pillow-simd' if get_dist('pillow-simd') is not None else 'pillow'
requirements.append(pillow_req + pillow_ver)
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, 'torchvision', 'csrc')
main_file = glob.glob(os.path.join(extensions_dir, '*.cpp'))
source_cpu = glob.glob(os.path.join(extensions_dir, 'cpu', '*.cpp'))
source_cuda = glob.glob(os.path.join(extensions_dir, 'cuda', '*.cu'))
sources = main_file + source_cpu
extension = CppExtension
define_macros = []
if torch.cuda.is_available() and CUDA_HOME is not None:
extension = CUDAExtension
sources += source_cuda
define_macros += [('WITH_CUDA', None)]
sources = [os.path.join(extensions_dir, s) for s in sources]
include_dirs = [extensions_dir]
ext_modules = [
extension(
'torchvision._C',
sources,
include_dirs=include_dirs,
define_macros=define_macros,
)
]
return ext_modules
class clean(distutils.command.clean.clean):
def run(self):
with open('.gitignore', 'r') as f:
ignores = f.read()
for wildcard in filter(None, ignores.split('\n')):
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
# It's an old-style class in Python 2.7...
distutils.command.clean.clean.run(self)
setup(
# Metadata
name=package_name,
......@@ -88,4 +143,6 @@ setup(
extras_require={
"scipy": ["scipy"],
},
ext_modules=get_extensions(),
cmdclass={'build_ext': torch.utils.cpp_extension.BuildExtension, 'clean': clean}
)
This diff is collapsed.
from torchvision import models
from torchvision import datasets
from torchvision import ops
from torchvision import transforms
from torchvision import utils
......
#pragma once
#include "cpu/vision.h"
#ifdef WITH_CUDA
#include "cuda/vision.h"
#endif
// Interface for Python
at::Tensor ROIAlign_forward(
const at::Tensor& input, // Input feature map.
const at::Tensor& rois, // List of ROIs to pool over.
const float spatial_scale, // The scale of the image features. ROIs will be
// scaled to this.
const int pooled_height, // The height of the pooled feature map.
const int pooled_width, // The width of the pooled feature
const int sampling_ratio) // The number of points to sample in each bin
// along each axis.
{
if (input.type().is_cuda()) {
#ifdef WITH_CUDA
return ROIAlign_forward_cuda(
input,
rois,
spatial_scale,
pooled_height,
pooled_width,
sampling_ratio);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
return ROIAlign_forward_cpu(
input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
}
at::Tensor ROIAlign_backward(
const at::Tensor& grad,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width,
const int sampling_ratio) {
if (grad.type().is_cuda()) {
#ifdef WITH_CUDA
return ROIAlign_backward_cuda(
grad,
rois,
spatial_scale,
pooled_height,
pooled_width,
batch_size,
channels,
height,
width,
sampling_ratio);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
return ROIAlign_backward_cpu(
grad,
rois,
spatial_scale,
pooled_height,
pooled_width,
batch_size,
channels,
height,
width,
sampling_ratio);
}
#pragma once
#include "cpu/vision.h"
#ifdef WITH_CUDA
#include "cuda/vision.h"
#endif
std::tuple<at::Tensor, at::Tensor> ROIPool_forward(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width) {
if (input.type().is_cuda()) {
#ifdef WITH_CUDA
return ROIPool_forward_cuda(
input, rois, spatial_scale, pooled_height, pooled_width);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
return ROIPool_forward_cpu(
input, rois, spatial_scale, pooled_height, pooled_width);
}
at::Tensor ROIPool_backward(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& argmax,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width) {
if (grad.type().is_cuda()) {
#ifdef WITH_CUDA
return ROIPool_backward_cuda(
grad,
rois,
argmax,
spatial_scale,
pooled_height,
pooled_width,
batch_size,
channels,
height,
width);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
return ROIPool_backward_cpu(
grad,
rois,
argmax,
spatial_scale,
pooled_height,
pooled_width,
batch_size,
channels,
height,
width);
}
\ No newline at end of file
#include <ATen/TensorUtils.h>
#include "cpu/vision.h"
// implementation taken from Caffe2
template <typename T>
struct PreCalc {
int pos1;
int pos2;
int pos3;
int pos4;
T w1;
T w2;
T w3;
T w4;
};
template <typename T>
void pre_calc_for_bilinear_interpolate(
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int iy_upper,
const int ix_upper,
T roi_start_h,
T roi_start_w,
T bin_size_h,
T bin_size_w,
int roi_bin_grid_h,
int roi_bin_grid_w,
std::vector<PreCalc<T>>& pre_calc) {
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
for (int iy = 0; iy < iy_upper; iy++) {
const T yy = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < ix_upper; ix++) {
const T xx = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
T x = xx;
T y = yy;
// deal with: inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
PreCalc<T> pc;
pc.pos1 = 0;
pc.pos2 = 0;
pc.pos3 = 0;
pc.pos4 = 0;
pc.w1 = 0;
pc.w2 = 0;
pc.w3 = 0;
pc.w4 = 0;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
continue;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
int y_low = (int)y;
int x_low = (int)x;
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
// save weights and indeces
PreCalc<T> pc;
pc.pos1 = y_low * width + x_low;
pc.pos2 = y_low * width + x_high;
pc.pos3 = y_high * width + x_low;
pc.pos4 = y_high * width + x_high;
pc.w1 = w1;
pc.w2 = w2;
pc.w3 = w3;
pc.w4 = w4;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
}
}
}
}
}
template <typename T>
void ROIAlignForward(
const int nthreads,
const T* input,
const T& spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const T* rois,
T* output) {
int n_rois = nthreads / channels / pooled_width / pooled_height;
// (n, c, ph, pw) is an element in the pooled output
// can be parallelized using omp
// #pragma omp parallel for num_threads(32)
for (int n = 0; n < n_rois; n++) {
int index_n = n * channels * pooled_width * pooled_height;
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
// Do not using rounding; this implementation detail is critical
T roi_start_w = offset_rois[1] * spatial_scale;
T roi_start_h = offset_rois[2] * spatial_scale;
T roi_end_w = offset_rois[3] * spatial_scale;
T roi_end_h = offset_rois[4] * spatial_scale;
// T roi_start_w = round(offset_rois[0] * spatial_scale);
// T roi_start_h = round(offset_rois[1] * spatial_scale);
// T roi_end_w = round(offset_rois[2] * spatial_scale);
// T roi_end_h = round(offset_rois[3] * spatial_scale);
// Force malformed ROIs to be 1x1
T roi_width = std::max(roi_end_w - roi_start_w, (T)1.);
T roi_height = std::max(roi_end_h - roi_start_h, (T)1.);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
// we want to precalculate indeces and weights shared by all chanels,
// this is the key point of optimiation
std::vector<PreCalc<T>> pre_calc(
roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
pre_calc_for_bilinear_interpolate(
height,
width,
pooled_height,
pooled_width,
roi_bin_grid_h,
roi_bin_grid_w,
roi_start_h,
roi_start_w,
bin_size_h,
bin_size_w,
roi_bin_grid_h,
roi_bin_grid_w,
pre_calc);
for (int c = 0; c < channels; c++) {
int index_n_c = index_n + c * pooled_width * pooled_height;
const T* offset_input =
input + (roi_batch_ind * channels + c) * height * width;
int pre_calc_index = 0;
for (int ph = 0; ph < pooled_height; ph++) {
for (int pw = 0; pw < pooled_width; pw++) {
int index = index_n_c + ph * pooled_width + pw;
T output_val = 0.;
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
PreCalc<T> pc = pre_calc[pre_calc_index];
output_val += pc.w1 * offset_input[pc.pos1] +
pc.w2 * offset_input[pc.pos2] +
pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4];
pre_calc_index += 1;
}
}
output_val /= count;
output[index] = output_val;
} // for pw
} // for ph
} // for c
} // for n
}
template <typename T>
void bilinear_interpolate_gradient(
const int height,
const int width,
T y,
T x,
T& w1,
T& w2,
T& w3,
T& w4,
int& x_low,
int& x_high,
int& y_low,
int& y_high,
const int index /* index for debug only*/) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
w1 = w2 = w3 = w4 = 0.;
x_low = x_high = y_low = y_high = -1;
return;
}
if (y <= 0)
y = 0;
if (x <= 0)
x = 0;
y_low = (int)y;
x_low = (int)x;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
// reference in forward
// T v1 = input[y_low * width + x_low];
// T v2 = input[y_low * width + x_high];
// T v3 = input[y_high * width + x_low];
// T v4 = input[y_high * width + x_high];
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
return;
}
template <class T>
inline void add(T* address, const T& val) {
*address += val;
}
template <typename T>
void ROIAlignBackward(
const int nthreads,
const T* grad_output,
const T& spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
T* grad_input,
const T* rois,
const int n_stride,
const int c_stride,
const int h_stride,
const int w_stride) {
for (int index = 0; index < nthreads; index++) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
// Do not using rounding; this implementation detail is critical
T roi_start_w = offset_rois[1] * spatial_scale;
T roi_start_h = offset_rois[2] * spatial_scale;
T roi_end_w = offset_rois[3] * spatial_scale;
T roi_end_h = offset_rois[4] * spatial_scale;
// Force malformed ROIs to be 1x1
T roi_width = std::max(roi_end_w - roi_start_w, (T)1.);
T roi_height = std::max(roi_end_h - roi_start_h, (T)1.);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
T* offset_grad_input =
grad_input + ((roi_batch_ind * channels + c) * height * width);
int output_offset = n * n_stride + c * c_stride;
const T* offset_grad_output = grad_output + output_offset;
const T grad_output_this_bin =
offset_grad_output[ph * h_stride + pw * w_stride];
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
const T y = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T x = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
T w1, w2, w3, w4;
int x_low, x_high, y_low, y_high;
bilinear_interpolate_gradient(
height,
width,
y,
x,
w1,
w2,
w3,
w4,
x_low,
x_high,
y_low,
y_high,
index);
T g1 = grad_output_this_bin * w1 / count;
T g2 = grad_output_this_bin * w2 / count;
T g3 = grad_output_this_bin * w3 / count;
T g4 = grad_output_this_bin * w4 / count;
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
// atomic add is not needed for now since it is single threaded
add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
} // if
} // ix
} // iy
} // for
} // ROIAlignBackward
at::Tensor ROIAlign_forward_cpu(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int sampling_ratio) {
AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor");
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ROIAlign_forward_cpu";
at::checkAllSameType(c, {input_t, rois_t});
auto num_rois = rois.size(0);
auto channels = input.size(1);
auto height = input.size(2);
auto width = input.size(3);
at::Tensor output = at::zeros(
{num_rois, channels, pooled_height, pooled_width}, input.options());
auto output_size = num_rois * pooled_height * pooled_width * channels;
if (output.numel() == 0)
return output;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "ROIAlign_forward", [&] {
ROIAlignForward<scalar_t>(
output_size,
input.contiguous().data<scalar_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
sampling_ratio,
rois.contiguous().data<scalar_t>(),
output.data<scalar_t>());
});
return output;
}
at::Tensor ROIAlign_backward_cpu(
const at::Tensor& grad,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width,
const int sampling_ratio) {
AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor");
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ROIAlign_backward_cpu";
at::checkAllSameType(c, {grad_t, rois_t});
at::Tensor grad_input =
at::zeros({batch_size, channels, height, width}, grad.options());
// handle possibly empty gradients
if (grad.numel() == 0) {
return grad_input;
}
// get stride values to ensure indexing into gradients is correct.
int n_stride = grad.stride(0);
int c_stride = grad.stride(1);
int h_stride = grad.stride(2);
int w_stride = grad.stride(3);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.type(), "ROIAlign_forward", [&] {
ROIAlignBackward<scalar_t>(
grad.numel(),
grad.contiguous().data<scalar_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
sampling_ratio,
grad_input.data<scalar_t>(),
rois.contiguous().data<scalar_t>(),
n_stride,
c_stride,
h_stride,
w_stride);
});
return grad_input;
}
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <TH/TH.h>
#include <algorithm>
template <class T>
inline void add(T* address, const T& val) {
*address += val;
}
template <typename T>
void RoIPoolForward(
const T* input,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const T* rois,
const int num_rois,
T* output,
int* argmax_data) {
for (int n = 0; n < num_rois; ++n) {
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
int roi_start_w = round(offset_rois[1] * spatial_scale);
int roi_start_h = round(offset_rois[2] * spatial_scale);
int roi_end_w = round(offset_rois[3] * spatial_scale);
int roi_end_h = round(offset_rois[4] * spatial_scale);
// Force malformed ROIs to be 1x1
int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);
int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
for (int ph = 0; ph < pooled_height; ++ph) {
for (int pw = 0; pw < pooled_width; ++pw) {
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
// Add roi offsets and clip to input boundaries
hstart = std::min(std::max(hstart + roi_start_h, 0), height);
hend = std::min(std::max(hend + roi_start_h, 0), height);
wstart = std::min(std::max(wstart + roi_start_w, 0), width);
wend = std::min(std::max(wend + roi_start_w, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
for (int c = 0; c < channels; ++c) {
// Define an empty pooling region to be zero
T maxval = is_empty ? 0 : -FLT_MAX;
// If nothing is pooled, argmax = -1 causes nothing to be backprop'd
int maxidx = -1;
const T* input_offset =
input + (roi_batch_ind * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int input_index = h * width + w;
if (input_offset[input_index] > maxval) {
maxval = input_offset[input_index];
maxidx = input_index;
}
}
}
int index =
((n * channels + c) * pooled_height + ph) * pooled_width + pw;
output[index] = maxval;
argmax_data[index] = maxidx;
} // channels
} // pooled_width
} // pooled_height
} // num_rois
}
template <typename T>
void RoIPoolBackward(
const T* grad_output,
const int* argmax_data,
const int num_rois,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
T* grad_input,
const T* rois,
const int n_stride,
const int c_stride,
const int h_stride,
const int w_stride) {
for (int n = 0; n < num_rois; ++n) {
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
for (int c = 0; c < channels; ++c) {
T* grad_input_offset =
grad_input + ((roi_batch_ind * channels + c) * height * width);
const int* argmax_data_offset =
argmax_data + (n * channels + c) * pooled_height * pooled_width;
for (int ph = 0; ph < pooled_height; ++ph) {
for (int pw = 0; pw < pooled_width; ++pw) {
int output_offset = n * n_stride + c * c_stride;
int argmax = argmax_data_offset[ph * pooled_width + pw];
if (argmax != -1) {
add(grad_input_offset + argmax,
static_cast<T>(
grad_output
[output_offset + ph * h_stride + pw * w_stride]));
}
} // pooled_width
} // pooled_height
} // channels
} // num_rois
}
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cpu(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width) {
AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor");
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ROIPool_forward_cpu";
at::checkAllSameType(c, {input_t, rois_t});
int num_rois = rois.size(0);
int channels = input.size(1);
int height = input.size(2);
int width = input.size(3);
at::Tensor output = at::zeros(
{num_rois, channels, pooled_height, pooled_width}, input.options());
at::Tensor argmax = at::zeros(
{num_rois, channels, pooled_height, pooled_width},
input.options().dtype(at::kInt));
if (output.numel() == 0) {
return std::make_tuple(output, argmax);
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "ROIPool_forward", [&] {
RoIPoolForward<scalar_t>(
input.contiguous().data<scalar_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
rois.contiguous().data<scalar_t>(),
num_rois,
output.data<scalar_t>(),
argmax.data<int>());
});
return std::make_tuple(output, argmax);
}
at::Tensor ROIPool_backward_cpu(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& argmax,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width) {
// Check if input tensors are CPU tensors
AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor");
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
AT_ASSERTM(argmax.device().is_cpu(), "argmax must be a CPU tensor");
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ROIPool_backward_cpu";
at::checkAllSameType(c, {grad_t, rois_t});
auto num_rois = rois.size(0);
at::Tensor grad_input =
at::zeros({batch_size, channels, height, width}, grad.options());
// handle possibly empty gradients
if (grad.numel() == 0) {
return grad_input;
}
// get stride values to ensure indexing into gradients is correct.
int n_stride = grad.stride(0);
int c_stride = grad.stride(1);
int h_stride = grad.stride(2);
int w_stride = grad.stride(3);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.type(), "ROIPool_backward", [&] {
RoIPoolBackward<scalar_t>(
grad.contiguous().data<scalar_t>(),
argmax.data<int>(),
num_rois,
channels,
height,
width,
pooled_height,
pooled_width,
grad_input.data<scalar_t>(),
rois.contiguous().data<scalar_t>(),
n_stride,
c_stride,
h_stride,
w_stride);
});
return grad_input;
}
#include "cpu/vision.h"
template <typename scalar_t>
at::Tensor nms_cpu_kernel(
const at::Tensor& dets,
const at::Tensor& scores,
const float threshold) {
AT_ASSERTM(!dets.type().is_cuda(), "dets must be a CPU tensor");
AT_ASSERTM(!scores.type().is_cuda(), "scores must be a CPU tensor");
AT_ASSERTM(
dets.type() == scores.type(), "dets should have the same type as scores");
if (dets.numel() == 0)
return at::empty({0}, dets.options().dtype(at::kLong));
auto x1_t = dets.select(1, 0).contiguous();
auto y1_t = dets.select(1, 1).contiguous();
auto x2_t = dets.select(1, 2).contiguous();
auto y2_t = dets.select(1, 3).contiguous();
at::Tensor areas_t = (x2_t - x1_t) * (y2_t - y1_t);
auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
auto ndets = dets.size(0);
at::Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte));
at::Tensor keep_t = at::zeros({ndets}, dets.options().dtype(at::kLong));
auto suppressed = suppressed_t.data<uint8_t>();
auto keep = keep_t.data<int64_t>();
auto order = order_t.data<int64_t>();
auto x1 = x1_t.data<scalar_t>();
auto y1 = y1_t.data<scalar_t>();
auto x2 = x2_t.data<scalar_t>();
auto y2 = y2_t.data<scalar_t>();
auto areas = areas_t.data<scalar_t>();
int64_t num_to_keep = 0;
for (int64_t _i = 0; _i < ndets; _i++) {
auto i = order[_i];
if (suppressed[i] == 1)
continue;
keep[num_to_keep++] = i;
auto ix1 = x1[i];
auto iy1 = y1[i];
auto ix2 = x2[i];
auto iy2 = y2[i];
auto iarea = areas[i];
for (int64_t _j = _i + 1; _j < ndets; _j++) {
auto j = order[_j];
if (suppressed[j] == 1)
continue;
auto xx1 = std::max(ix1, x1[j]);
auto yy1 = std::max(iy1, y1[j]);
auto xx2 = std::min(ix2, x2[j]);
auto yy2 = std::min(iy2, y2[j]);
auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1);
auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1);
auto inter = w * h;
auto ovr = inter / (iarea + areas[j] - inter);
if (ovr >= threshold)
suppressed[j] = 1;
}
}
return keep_t.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep);
}
at::Tensor nms_cpu(
const at::Tensor& dets,
const at::Tensor& scores,
const float threshold) {
auto result = at::empty({0}, dets.options());
AT_DISPATCH_FLOATING_TYPES(dets.type(), "nms", [&] {
result = nms_cpu_kernel<scalar_t>(dets, scores, threshold);
});
return result;
}
#pragma once
#include <torch/extension.h>
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cpu(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width);
at::Tensor ROIPool_backward_cpu(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& argmax,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width);
at::Tensor ROIAlign_forward_cpu(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int sampling_ratio);
at::Tensor ROIAlign_backward_cpu(
const at::Tensor& grad,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width,
const int sampling_ratio);
at::Tensor nms_cpu(
const at::Tensor& dets,
const at::Tensor& scores,
const float threshold);
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include "cuda_helpers.h"
template <typename T>
__device__ T bilinear_interpolate(
const T* input,
const int height,
const int width,
T y,
T x,
const int index /* index for debug only*/) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
return 0;
}
if (y <= 0)
y = 0;
if (x <= 0)
x = 0;
int y_low = (int)y;
int x_low = (int)x;
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
// do bilinear interpolation
T v1 = input[y_low * width + x_low];
T v2 = input[y_low * width + x_high];
T v3 = input[y_high * width + x_low];
T v4 = input[y_high * width + x_high];
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename T>
__global__ void RoIAlignForward(
const int nthreads,
const T* input,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const T* rois,
T* output) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
// Do not using rounding; this implementation detail is critical
T roi_start_w = offset_rois[1] * spatial_scale;
T roi_start_h = offset_rois[2] * spatial_scale;
T roi_end_w = offset_rois[3] * spatial_scale;
T roi_end_h = offset_rois[4] * spatial_scale;
// Force malformed ROIs to be 1x1
T roi_width = max(roi_end_w - roi_start_w, (T)1.);
T roi_height = max(roi_end_h - roi_start_h, (T)1.);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
const T* offset_input =
input + (roi_batch_ind * channels + c) * height * width;
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
T output_val = 0.;
for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
{
const T y = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T x = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
T val = bilinear_interpolate(offset_input, height, width, y, x, index);
output_val += val;
}
}
output_val /= count;
output[index] = output_val;
}
}
template <typename T>
__device__ void bilinear_interpolate_gradient(
const int height,
const int width,
T y,
T x,
T& w1,
T& w2,
T& w3,
T& w4,
int& x_low,
int& x_high,
int& y_low,
int& y_high,
const int index /* index for debug only*/) {
// deal with cases that inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
w1 = w2 = w3 = w4 = 0.;
x_low = x_high = y_low = y_high = -1;
return;
}
if (y <= 0)
y = 0;
if (x <= 0)
x = 0;
y_low = (int)y;
x_low = (int)x;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (T)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (T)x_low;
} else {
x_high = x_low + 1;
}
T ly = y - y_low;
T lx = x - x_low;
T hy = 1. - ly, hx = 1. - lx;
// reference in forward
// T v1 = input[y_low * width + x_low];
// T v2 = input[y_low * width + x_high];
// T v3 = input[y_high * width + x_low];
// T v4 = input[y_high * width + x_high];
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
return;
}
template <typename T>
__global__ void RoIAlignBackward(
const int nthreads,
const T* grad_output,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
T* grad_input,
const T* rois,
const int n_stride,
const int c_stride,
const int h_stride,
const int w_stride) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
// Do not using rounding; this implementation detail is critical
T roi_start_w = offset_rois[1] * spatial_scale;
T roi_start_h = offset_rois[2] * spatial_scale;
T roi_end_w = offset_rois[3] * spatial_scale;
T roi_end_h = offset_rois[4] * spatial_scale;
// Force malformed ROIs to be 1x1
T roi_width = max(roi_end_w - roi_start_w, (T)1.);
T roi_height = max(roi_end_h - roi_start_h, (T)1.);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
T* offset_grad_input =
grad_input + ((roi_batch_ind * channels + c) * height * width);
// We need to index the gradient using the tensor strides to access the
// correct values.
int output_offset = n * n_stride + c * c_stride;
const T* offset_grad_output = grad_output + output_offset;
const T grad_output_this_bin =
offset_grad_output[ph * h_stride + pw * w_stride];
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
{
const T y = roi_start_h + ph * bin_size_h +
static_cast<T>(iy + .5f) * bin_size_h /
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
const T x = roi_start_w + pw * bin_size_w +
static_cast<T>(ix + .5f) * bin_size_w /
static_cast<T>(roi_bin_grid_w);
T w1, w2, w3, w4;
int x_low, x_high, y_low, y_high;
bilinear_interpolate_gradient(
height,
width,
y,
x,
w1,
w2,
w3,
w4,
x_low,
x_high,
y_low,
y_high,
index);
T g1 = grad_output_this_bin * w1 / count;
T g2 = grad_output_this_bin * w2 / count;
T g3 = grad_output_this_bin * w3 / count;
T g4 = grad_output_this_bin * w4 / count;
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
atomicAdd(
offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
atomicAdd(
offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
atomicAdd(
offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
atomicAdd(
offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
} // if
} // ix
} // iy
} // CUDA_1D_KERNEL_LOOP
} // RoIAlignBackward
at::Tensor ROIAlign_forward_cuda(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int sampling_ratio) {
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ROIAlign_forward_cuda";
at::checkAllSameGPU(c, {input_t, rois_t});
at::checkAllSameType(c, {input_t, rois_t});
at::cuda::CUDAGuard device_guard(input.device());
auto num_rois = rois.size(0);
auto channels = input.size(1);
auto height = input.size(2);
auto width = input.size(3);
at::Tensor output = at::zeros(
{num_rois, channels, pooled_height, pooled_width}, input.options());
auto output_size = num_rois * pooled_height * pooled_width * channels;
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 grid(std::min(at::cuda::ATenCeilDiv(output_size, 512L), 4096L));
dim3 block(512);
if (output.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return output;
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "ROIAlign_forward", [&] {
RoIAlignForward<scalar_t><<<grid, block, 0, stream>>>(
output_size,
input.contiguous().data<scalar_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
sampling_ratio,
rois.contiguous().data<scalar_t>(),
output.data<scalar_t>());
});
AT_CUDA_CHECK(cudaGetLastError());
return output;
}
at::Tensor ROIAlign_backward_cuda(
const at::Tensor& grad,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width,
const int sampling_ratio) {
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ROIAlign_backward_cuda";
at::checkAllSameGPU(c, {grad_t, rois_t});
at::checkAllSameType(c, {grad_t, rois_t});
at::cuda::CUDAGuard device_guard(grad.device());
at::Tensor grad_input =
at::zeros({batch_size, channels, height, width}, grad.options());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 grid(std::min(at::cuda::ATenCeilDiv(grad.numel(), 512L), 4096L));
dim3 block(512);
// handle possibly empty gradients
if (grad.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return grad_input;
}
int n_stride = grad.stride(0);
int c_stride = grad.stride(1);
int h_stride = grad.stride(2);
int w_stride = grad.stride(3);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.type(), "ROIAlign_backward", [&] {
RoIAlignBackward<scalar_t><<<grid, block, 0, stream>>>(
grad.numel(),
grad.contiguous().data<scalar_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
sampling_ratio,
grad_input.data<scalar_t>(),
rois.contiguous().data<scalar_t>(),
n_stride,
c_stride,
h_stride,
w_stride);
});
AT_CUDA_CHECK(cudaGetLastError());
return grad_input;
}
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include "cuda_helpers.h"
template <typename T>
__global__ void RoIPoolForward(
const int nthreads,
const T* input,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const T* rois,
T* output,
int* argmax_data) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
int roi_start_w = round(offset_rois[1] * spatial_scale);
int roi_start_h = round(offset_rois[2] * spatial_scale);
int roi_end_w = round(offset_rois[3] * spatial_scale);
int roi_end_h = round(offset_rois[4] * spatial_scale);
// Force malformed ROIs to be 1x1
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
// Add roi offsets and clip to input boundaries
hstart = min(max(hstart + roi_start_h, 0), height);
hend = min(max(hend + roi_start_h, 0), height);
wstart = min(max(wstart + roi_start_w, 0), width);
wend = min(max(wend + roi_start_w, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
// Define an empty pooling region to be zero
T maxval = is_empty ? 0 : -FLT_MAX;
// If nothing is pooled, argmax = -1 causes nothing to be backprop'd
int maxidx = -1;
const T* offset_input =
input + (roi_batch_ind * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int input_index = h * width + w;
if (offset_input[input_index] > maxval) {
maxval = offset_input[input_index];
maxidx = input_index;
}
}
}
output[index] = maxval;
argmax_data[index] = maxidx;
}
}
template <typename T>
__global__ void RoIPoolBackward(
const int nthreads,
const T* grad_output,
const int* argmax_data,
const int num_rois,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
T* grad_input,
const T* rois,
const int n_stride,
const int c_stride,
const int h_stride,
const int w_stride) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const T* offset_rois = rois + n * 5;
int roi_batch_ind = offset_rois[0];
T* grad_input_offset =
grad_input + ((roi_batch_ind * channels + c) * height * width);
int output_offset = n * n_stride + c * c_stride;
const int* argmax_data_offset =
argmax_data + (n * channels + c) * pooled_height * pooled_width;
int argmax = argmax_data_offset[ph * pooled_width + pw];
if (argmax != -1) {
atomicAdd(
grad_input_offset + argmax,
static_cast<T>(
grad_output[output_offset + ph * h_stride + pw * w_stride]));
}
}
}
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width) {
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};
at::CheckedFrom c = "ROIPool_forward_cuda";
at::checkAllSameGPU(c, {input_t, rois_t});
at::checkAllSameType(c, {input_t, rois_t});
at::cuda::CUDAGuard device_guard(input.device());
auto num_rois = rois.size(0);
auto channels = input.size(1);
auto height = input.size(2);
auto width = input.size(3);
at::Tensor output = at::zeros(
{num_rois, channels, pooled_height, pooled_width}, input.options());
at::Tensor argmax = at::zeros(
{num_rois, channels, pooled_height, pooled_width},
input.options().dtype(at::kInt));
auto output_size = num_rois * pooled_height * pooled_width * channels;
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 grid(std::min(at::cuda::ATenCeilDiv(output_size, 512L), 4096L));
dim3 block(512);
if (output.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(output, argmax);
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "ROIPool_forward", [&] {
RoIPoolForward<scalar_t><<<grid, block, 0, stream>>>(
output_size,
input.contiguous().data<scalar_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
rois.contiguous().data<scalar_t>(),
output.data<scalar_t>(),
argmax.data<int>());
});
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(output, argmax);
}
at::Tensor ROIPool_backward_cuda(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& argmax,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width) {
// Check if input tensors are CUDA tensors
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
AT_ASSERTM(argmax.device().is_cuda(), "argmax must be a CUDA tensor");
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
argmax_t{argmax, "argmax", 3};
at::CheckedFrom c = "ROIPool_backward_cuda";
at::checkAllSameGPU(c, {grad_t, rois_t, argmax_t});
at::checkAllSameType(c, {grad_t, rois_t});
at::cuda::CUDAGuard device_guard(grad.device());
auto num_rois = rois.size(0);
at::Tensor grad_input =
at::zeros({batch_size, channels, height, width}, grad.options());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
dim3 grid(std::min(at::cuda::ATenCeilDiv(grad.numel(), 512L), 4096L));
dim3 block(512);
// handle possibly empty gradients
if (grad.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return grad_input;
}
int n_stride = grad.stride(0);
int c_stride = grad.stride(1);
int h_stride = grad.stride(2);
int w_stride = grad.stride(3);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.type(), "ROIPool_backward", [&] {
RoIPoolBackward<scalar_t><<<grid, block, 0, stream>>>(
grad.numel(),
grad.contiguous().data<scalar_t>(),
argmax.contiguous().data<int>(),
num_rois,
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
grad_input.data<scalar_t>(),
rois.contiguous().data<scalar_t>(),
n_stride,
c_stride,
h_stride,
w_stride);
});
AT_CUDA_CHECK(cudaGetLastError());
return grad_input;
}
#pragma once
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = (blockIdx.x * blockDim.x) + threadIdx.x; i < (n); \
i += (blockDim.x * gridDim.x))
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include "cuda_helpers.h"
#include <iostream>
#include <vector>
int const threadsPerBlock = sizeof(unsigned long long) * 8;
template <typename T>
__device__ inline float devIoU(T const* const a, T const* const b) {
T left = max(a[0], b[0]), right = min(a[2], b[2]);
T top = max(a[1], b[1]), bottom = min(a[3], b[3]);
T width = max(right - left, (T)0), height = max(bottom - top, (T)0);
T interS = width * height;
T Sa = (a[2] - a[0]) * (a[3] - a[1]);
T Sb = (b[2] - b[0]) * (b[3] - b[1]);
return interS / (Sa + Sb - interS);
}
template <typename T>
__global__ void nms_kernel(
const int n_boxes,
const float nms_overlap_thresh,
const T* dev_boxes,
unsigned long long* dev_mask) {
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size =
min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
const int col_size =
min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
__shared__ T block_boxes[threadsPerBlock * 5];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 5 + 0] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
block_boxes[threadIdx.x * 5 + 1] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
block_boxes[threadIdx.x * 5 + 2] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
block_boxes[threadIdx.x * 5 + 3] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
block_boxes[threadIdx.x * 5 + 4] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
const T* cur_box = dev_boxes + cur_box_idx * 5;
int i = 0;
unsigned long long t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (devIoU<T>(cur_box, block_boxes + i * 5) > nms_overlap_thresh) {
t |= 1ULL << i;
}
}
const int col_blocks = at::cuda::ATenCeilDiv(n_boxes, threadsPerBlock);
dev_mask[cur_box_idx * col_blocks + col_start] = t;
}
}
// boxes is a N x 5 tensor
at::Tensor nms_cuda(const at::Tensor boxes, float nms_overlap_thresh) {
using scalar_t = float;
AT_ASSERTM(boxes.type().is_cuda(), "boxes must be a CUDA tensor");
at::cuda::CUDAGuard device_guard(boxes.device());
auto scores = boxes.select(1, 4);
auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
auto boxes_sorted = boxes.index_select(0, order_t);
int boxes_num = boxes.size(0);
const int col_blocks = at::cuda::ATenCeilDiv(boxes_num, threadsPerBlock);
at::Tensor mask =
at::empty({boxes_num * col_blocks}, boxes.options().dtype(at::kLong));
dim3 blocks(col_blocks, col_blocks);
dim3 threads(threadsPerBlock);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
boxes_sorted.type(), "nms_kernel_cuda", [&] {
nms_kernel<scalar_t><<<blocks, threads, 0, stream>>>(
boxes_num,
nms_overlap_thresh,
boxes_sorted.data<scalar_t>(),
(unsigned long long*)mask.data<int64_t>());
});
at::Tensor mask_cpu = mask.to(at::kCPU);
unsigned long long* mask_host = (unsigned long long*)mask_cpu.data<int64_t>();
std::vector<unsigned long long> remv(col_blocks);
memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
at::Tensor keep =
at::empty({boxes_num}, boxes.options().dtype(at::kLong).device(at::kCPU));
int64_t* keep_out = keep.data<int64_t>();
int num_to_keep = 0;
for (int i = 0; i < boxes_num; i++) {
int nblock = i / threadsPerBlock;
int inblock = i % threadsPerBlock;
if (!(remv[nblock] & (1ULL << inblock))) {
keep_out[num_to_keep++] = i;
unsigned long long* p = mask_host + i * col_blocks;
for (int j = nblock; j < col_blocks; j++) {
remv[j] |= p[j];
}
}
}
AT_CUDA_CHECK(cudaGetLastError());
return
order_t
.index({keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep)
.to(order_t.device(), keep.scalar_type())});
}
#pragma once
#include <c10/cuda/CUDAGuard.h>
#include <torch/extension.h>
at::Tensor ROIAlign_forward_cuda(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int sampling_ratio);
at::Tensor ROIAlign_backward_cuda(
const at::Tensor& grad,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width,
const int sampling_ratio);
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(
const at::Tensor& input,
const at::Tensor& rois,
const float spatial_scale,
const int pooled_height,
const int pooled_width);
at::Tensor ROIPool_backward_cuda(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& argmax,
const float spatial_scale,
const int pooled_height,
const int pooled_width,
const int batch_size,
const int channels,
const int height,
const int width);
at::Tensor nms_cuda(const at::Tensor boxes, float nms_overlap_thresh);
#pragma once
#include "cpu/vision.h"
#ifdef WITH_CUDA
#include "cuda/vision.h"
#endif
at::Tensor nms(
const at::Tensor& dets,
const at::Tensor& scores,
const float threshold) {
if (dets.device().is_cuda()) {
#ifdef WITH_CUDA
if (dets.numel() == 0) {
at::cuda::CUDAGuard device_guard(dets.device());
return at::empty({0}, dets.options().dtype(at::kLong));
}
auto b = at::cat({dets, scores.unsqueeze(1)}, 1);
return nms_cuda(b, threshold);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
at::Tensor result = nms_cpu(dets, scores, threshold);
return result;
}
#include "ROIAlign.h"
#include "ROIPool.h"
#include "nms.h"
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("nms", &nms, "non-maximum suppression");
m.def("roi_align_forward", &ROIAlign_forward, "ROIAlign_forward");
m.def("roi_align_backward", &ROIAlign_backward, "ROIAlign_backward");
m.def("roi_pool_forward", &ROIPool_forward, "ROIPool_forward");
m.def("roi_pool_backward", &ROIPool_backward, "ROIPool_backward");
}
from .boxes import nms, box_iou
from .roi_align import roi_align, RoIAlign
from .roi_pool import roi_pool, RoIPool
__all__ = [
'nms', 'roi_align', 'RoIAlign', 'roi_pool', 'RoIPool'
]
import torch
def _cat(tensors, dim=0):
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
def convert_boxes_to_roi_format(boxes):
concat_boxes = _cat([b for b in boxes], dim=0)
ids = _cat(
[
torch.full_like(b[:, :1], i)
for i, b in enumerate(boxes)
],
dim=0,
)
rois = torch.cat([ids, concat_boxes], dim=1)
return rois
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment