Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
d9830d86
Unverified
Commit
d9830d86
authored
Jul 24, 2019
by
Francisco Massa
Committed by
GitHub
Jul 24, 2019
Browse files
Add HMDB51 and UCF101 datasets (#1156)
* Add HMDB51 and UCF101 * Remove debug code
parent
010984d4
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
108 additions
and
1 deletion
+108
-1
torchvision/datasets/__init__.py
torchvision/datasets/__init__.py
+3
-1
torchvision/datasets/hmdb51.py
torchvision/datasets/hmdb51.py
+56
-0
torchvision/datasets/ucf101.py
torchvision/datasets/ucf101.py
+49
-0
No files found.
torchvision/datasets/__init__.py
View file @
d9830d86
...
...
@@ -20,6 +20,8 @@ from .sbd import SBDataset
from
.vision
import
VisionDataset
from
.usps
import
USPS
from
.kinetics
import
KineticsVideo
from
.hmdb51
import
HMDB51
from
.ucf101
import
UCF101
__all__
=
(
'LSUN'
,
'LSUNClass'
,
'ImageFolder'
,
'DatasetFolder'
,
'FakeData'
,
...
...
@@ -29,4 +31,4 @@ __all__ = ('LSUN', 'LSUNClass',
'Omniglot'
,
'SBU'
,
'Flickr8k'
,
'Flickr30k'
,
'VOCSegmentation'
,
'VOCDetection'
,
'Cityscapes'
,
'ImageNet'
,
'Caltech101'
,
'Caltech256'
,
'CelebA'
,
'SBDataset'
,
'VisionDataset'
,
'USPS'
,
'KineticsVideo'
)
'USPS'
,
'KineticsVideo'
,
'HMDB51'
,
'UCF101'
)
torchvision/datasets/hmdb51.py
0 → 100644
View file @
d9830d86
import
glob
import
os
from
.video_utils
import
VideoClips
from
.utils
import
list_dir
from
.folder
import
make_dataset
from
.vision
import
VisionDataset
class
HMDB51
(
VisionDataset
):
data_url
=
"http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar"
splits
=
{
"url"
:
"http://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/test_train_splits.rar"
,
"md5"
:
"15e67781e70dcfbdce2d7dbb9b3344b5"
}
def
__init__
(
self
,
root
,
annotation_path
,
frames_per_clip
,
step_between_clips
=
1
,
fold
=
1
,
train
=
True
):
super
(
HMDB51
,
self
).
__init__
(
root
)
extensions
=
(
'avi'
,)
self
.
fold
=
fold
self
.
train
=
train
classes
=
list
(
sorted
(
list_dir
(
root
)))
class_to_idx
=
{
classes
[
i
]:
i
for
i
in
range
(
len
(
classes
))}
self
.
samples
=
make_dataset
(
self
.
root
,
class_to_idx
,
extensions
,
is_valid_file
=
None
)
self
.
classes
=
classes
video_list
=
[
x
[
0
]
for
x
in
self
.
samples
]
video_clips
=
VideoClips
(
video_list
,
frames_per_clip
,
step_between_clips
)
indices
=
self
.
_select_fold
(
video_list
,
annotation_path
,
fold
,
train
)
self
.
video_clips
=
video_clips
.
subset
(
indices
)
def
_select_fold
(
self
,
video_list
,
annotation_path
,
fold
,
train
):
target_tag
=
1
if
train
else
2
name
=
"*test_split{}.txt"
.
format
(
fold
)
files
=
glob
.
glob
(
os
.
path
.
join
(
annotation_path
,
name
))
selected_files
=
[]
for
f
in
files
:
with
open
(
f
,
"r"
)
as
fid
:
data
=
fid
.
readlines
()
data
=
[
x
.
strip
().
split
(
" "
)
for
x
in
data
]
data
=
[
x
[
0
]
for
x
in
data
if
int
(
x
[
1
])
==
target_tag
]
selected_files
.
extend
(
data
)
selected_files
=
set
(
selected_files
)
indices
=
[
i
for
i
in
range
(
len
(
video_list
))
if
os
.
path
.
basename
(
video_list
[
i
])
in
selected_files
]
return
indices
def
__len__
(
self
):
return
self
.
video_clips
.
num_clips
()
def
__getitem__
(
self
,
idx
):
video
,
audio
,
info
,
video_idx
=
self
.
video_clips
.
get_clip
(
idx
)
label
=
self
.
samples
[
video_idx
][
1
]
return
video
,
audio
,
label
torchvision/datasets/ucf101.py
0 → 100644
View file @
d9830d86
import
glob
import
os
from
.video_utils
import
VideoClips
from
.utils
import
list_dir
from
.folder
import
make_dataset
from
.vision
import
VisionDataset
class
UCF101
(
VisionDataset
):
def
__init__
(
self
,
root
,
annotation_path
,
frames_per_clip
,
step_between_clips
=
1
,
fold
=
1
,
train
=
True
):
super
(
UCF101
,
self
).
__init__
(
root
)
extensions
=
(
'avi'
,)
self
.
fold
=
fold
self
.
train
=
train
classes
=
list
(
sorted
(
list_dir
(
root
)))
class_to_idx
=
{
classes
[
i
]:
i
for
i
in
range
(
len
(
classes
))}
self
.
samples
=
make_dataset
(
self
.
root
,
class_to_idx
,
extensions
,
is_valid_file
=
None
)
self
.
classes
=
classes
video_list
=
[
x
[
0
]
for
x
in
self
.
samples
]
video_clips
=
VideoClips
(
video_list
,
frames_per_clip
,
step_between_clips
)
indices
=
self
.
_select_fold
(
video_list
,
annotation_path
,
fold
,
train
)
self
.
video_clips
=
video_clips
.
subset
(
indices
)
def
_select_fold
(
self
,
video_list
,
annotation_path
,
fold
,
train
):
name
=
"train"
if
train
else
"test"
name
=
"{}list{:02d}.txt"
.
format
(
name
,
fold
)
f
=
os
.
path
.
join
(
annotation_path
,
name
)
selected_files
=
[]
with
open
(
f
,
"r"
)
as
fid
:
data
=
fid
.
readlines
()
data
=
[
x
.
strip
().
split
(
" "
)
for
x
in
data
]
data
=
[
x
[
0
]
for
x
in
data
]
selected_files
.
extend
(
data
)
selected_files
=
set
(
selected_files
)
indices
=
[
i
for
i
in
range
(
len
(
video_list
))
if
video_list
[
i
][
len
(
self
.
root
)
+
1
:]
in
selected_files
]
return
indices
def
__len__
(
self
):
return
self
.
video_clips
.
num_clips
()
def
__getitem__
(
self
,
idx
):
video
,
audio
,
info
,
video_idx
=
self
.
video_clips
.
get_clip
(
idx
)
label
=
self
.
samples
[
video_idx
][
1
]
return
video
,
audio
,
label
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment