Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
d716c426
Unverified
Commit
d716c426
authored
Dec 09, 2021
by
Kai Zhang
Committed by
GitHub
Dec 09, 2021
Browse files
revamp log api usage method (#5072)
* revamp log api usage method
parent
e0c5cc41
Changes
35
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
20 additions
and
20 deletions
+20
-20
torchvision/datasets/vision.py
torchvision/datasets/vision.py
+1
-1
torchvision/models/alexnet.py
torchvision/models/alexnet.py
+1
-1
torchvision/models/densenet.py
torchvision/models/densenet.py
+1
-1
torchvision/models/detection/generalized_rcnn.py
torchvision/models/detection/generalized_rcnn.py
+1
-1
torchvision/models/detection/retinanet.py
torchvision/models/detection/retinanet.py
+1
-1
torchvision/models/detection/ssd.py
torchvision/models/detection/ssd.py
+1
-1
torchvision/models/detection/ssdlite.py
torchvision/models/detection/ssdlite.py
+1
-1
torchvision/models/efficientnet.py
torchvision/models/efficientnet.py
+1
-1
torchvision/models/googlenet.py
torchvision/models/googlenet.py
+1
-1
torchvision/models/inception.py
torchvision/models/inception.py
+1
-1
torchvision/models/mnasnet.py
torchvision/models/mnasnet.py
+1
-1
torchvision/models/mobilenetv2.py
torchvision/models/mobilenetv2.py
+1
-1
torchvision/models/mobilenetv3.py
torchvision/models/mobilenetv3.py
+1
-1
torchvision/models/optical_flow/raft.py
torchvision/models/optical_flow/raft.py
+1
-1
torchvision/models/regnet.py
torchvision/models/regnet.py
+1
-1
torchvision/models/resnet.py
torchvision/models/resnet.py
+1
-1
torchvision/models/segmentation/_utils.py
torchvision/models/segmentation/_utils.py
+1
-1
torchvision/models/segmentation/lraspp.py
torchvision/models/segmentation/lraspp.py
+1
-1
torchvision/models/shufflenetv2.py
torchvision/models/shufflenetv2.py
+1
-1
torchvision/models/squeezenet.py
torchvision/models/squeezenet.py
+1
-1
No files found.
torchvision/datasets/vision.py
View file @
d716c426
...
...
@@ -35,7 +35,7 @@ class VisionDataset(data.Dataset):
transform
:
Optional
[
Callable
]
=
None
,
target_transform
:
Optional
[
Callable
]
=
None
,
)
->
None
:
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"datasets"
,
self
.
__class__
.
__name__
)
if
isinstance
(
root
,
torch
.
_six
.
string_classes
):
root
=
os
.
path
.
expanduser
(
root
)
self
.
root
=
root
...
...
torchvision/models/alexnet.py
View file @
d716c426
...
...
@@ -18,7 +18,7 @@ model_urls = {
class
AlexNet
(
nn
.
Module
):
def
__init__
(
self
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.5
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
features
=
nn
.
Sequential
(
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
11
,
stride
=
4
,
padding
=
2
),
nn
.
ReLU
(
inplace
=
True
),
...
...
torchvision/models/densenet.py
View file @
d716c426
...
...
@@ -163,7 +163,7 @@ class DenseNet(nn.Module):
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
# First convolution
self
.
features
=
nn
.
Sequential
(
...
...
torchvision/models/detection/generalized_rcnn.py
View file @
d716c426
...
...
@@ -27,7 +27,7 @@ class GeneralizedRCNN(nn.Module):
def
__init__
(
self
,
backbone
:
nn
.
Module
,
rpn
:
nn
.
Module
,
roi_heads
:
nn
.
Module
,
transform
:
nn
.
Module
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
transform
=
transform
self
.
backbone
=
backbone
self
.
rpn
=
rpn
...
...
torchvision/models/detection/retinanet.py
View file @
d716c426
...
...
@@ -337,7 +337,7 @@ class RetinaNet(nn.Module):
topk_candidates
=
1000
,
):
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
not
hasattr
(
backbone
,
"out_channels"
):
raise
ValueError
(
...
...
torchvision/models/detection/ssd.py
View file @
d716c426
...
...
@@ -182,7 +182,7 @@ class SSD(nn.Module):
positive_fraction
:
float
=
0.25
,
):
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
backbone
=
backbone
...
...
torchvision/models/detection/ssdlite.py
View file @
d716c426
...
...
@@ -120,7 +120,7 @@ class SSDLiteFeatureExtractorMobileNet(nn.Module):
min_depth
:
int
=
16
,
):
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
assert
not
backbone
[
c4_pos
].
use_res_connect
self
.
features
=
nn
.
Sequential
(
...
...
torchvision/models/efficientnet.py
View file @
d716c426
...
...
@@ -170,7 +170,7 @@ class EfficientNet(nn.Module):
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
"""
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
not
inverted_residual_setting
:
raise
ValueError
(
"The inverted_residual_setting should not be empty"
)
...
...
torchvision/models/googlenet.py
View file @
d716c426
...
...
@@ -39,7 +39,7 @@ class GoogLeNet(nn.Module):
dropout_aux
:
float
=
0.7
,
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
blocks
is
None
:
blocks
=
[
BasicConv2d
,
Inception
,
InceptionAux
]
if
init_weights
is
None
:
...
...
torchvision/models/inception.py
View file @
d716c426
...
...
@@ -37,7 +37,7 @@ class Inception3(nn.Module):
dropout
:
float
=
0.5
,
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
inception_blocks
is
None
:
inception_blocks
=
[
BasicConv2d
,
InceptionA
,
InceptionB
,
InceptionC
,
InceptionD
,
InceptionE
,
InceptionAux
]
if
init_weights
is
None
:
...
...
torchvision/models/mnasnet.py
View file @
d716c426
...
...
@@ -98,7 +98,7 @@ class MNASNet(torch.nn.Module):
def
__init__
(
self
,
alpha
:
float
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.2
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
assert
alpha
>
0.0
self
.
alpha
=
alpha
self
.
num_classes
=
num_classes
...
...
torchvision/models/mobilenetv2.py
View file @
d716c426
...
...
@@ -111,7 +111,7 @@ class MobileNetV2(nn.Module):
"""
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
block
is
None
:
block
=
InvertedResidual
...
...
torchvision/models/mobilenetv3.py
View file @
d716c426
...
...
@@ -151,7 +151,7 @@ class MobileNetV3(nn.Module):
dropout (float): The droupout probability
"""
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
not
inverted_residual_setting
:
raise
ValueError
(
"The inverted_residual_setting should not be empty"
)
...
...
torchvision/models/optical_flow/raft.py
View file @
d716c426
...
...
@@ -440,7 +440,7 @@ class RAFT(nn.Module):
If ``None`` (default), the flow is upsampled using interpolation.
"""
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
feature_encoder
=
feature_encoder
self
.
context_encoder
=
context_encoder
...
...
torchvision/models/regnet.py
View file @
d716c426
...
...
@@ -310,7 +310,7 @@ class RegNet(nn.Module):
activation
:
Optional
[
Callable
[...,
nn
.
Module
]]
=
None
,
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
stem_type
is
None
:
stem_type
=
SimpleStemIN
...
...
torchvision/models/resnet.py
View file @
d716c426
...
...
@@ -174,7 +174,7 @@ class ResNet(nn.Module):
norm_layer
:
Optional
[
Callable
[...,
nn
.
Module
]]
=
None
,
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
norm_layer
is
None
:
norm_layer
=
nn
.
BatchNorm2d
self
.
_norm_layer
=
norm_layer
...
...
torchvision/models/segmentation/_utils.py
View file @
d716c426
...
...
@@ -13,7 +13,7 @@ class _SimpleSegmentationModel(nn.Module):
def
__init__
(
self
,
backbone
:
nn
.
Module
,
classifier
:
nn
.
Module
,
aux_classifier
:
Optional
[
nn
.
Module
]
=
None
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
backbone
=
backbone
self
.
classifier
=
classifier
self
.
aux_classifier
=
aux_classifier
...
...
torchvision/models/segmentation/lraspp.py
View file @
d716c426
...
...
@@ -38,7 +38,7 @@ class LRASPP(nn.Module):
self
,
backbone
:
nn
.
Module
,
low_channels
:
int
,
high_channels
:
int
,
num_classes
:
int
,
inter_channels
:
int
=
128
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
backbone
=
backbone
self
.
classifier
=
LRASPPHead
(
low_channels
,
high_channels
,
num_classes
,
inter_channels
)
...
...
torchvision/models/shufflenetv2.py
View file @
d716c426
...
...
@@ -100,7 +100,7 @@ class ShuffleNetV2(nn.Module):
inverted_residual
:
Callable
[...,
nn
.
Module
]
=
InvertedResidual
,
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
len
(
stages_repeats
)
!=
3
:
raise
ValueError
(
"expected stages_repeats as list of 3 positive ints"
)
...
...
torchvision/models/squeezenet.py
View file @
d716c426
...
...
@@ -36,7 +36,7 @@ class Fire(nn.Module):
class
SqueezeNet
(
nn
.
Module
):
def
__init__
(
self
,
version
:
str
=
"1_0"
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.5
)
->
None
:
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
num_classes
=
num_classes
if
version
==
"1_0"
:
self
.
features
=
nn
.
Sequential
(
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment