Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
d4d20f01
Unverified
Commit
d4d20f01
authored
Feb 16, 2023
by
Philip Meier
Committed by
GitHub
Feb 16, 2023
Browse files
make type alias private (#7266)
parent
e405f3c3
Changes
24
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
55 additions
and
55 deletions
+55
-55
torchvision/transforms/v2/functional/_geometry.py
torchvision/transforms/v2/functional/_geometry.py
+42
-42
torchvision/transforms/v2/functional/_meta.py
torchvision/transforms/v2/functional/_meta.py
+9
-9
torchvision/transforms/v2/functional/_misc.py
torchvision/transforms/v2/functional/_misc.py
+3
-3
torchvision/transforms/v2/functional/_temporal.py
torchvision/transforms/v2/functional/_temporal.py
+1
-1
No files found.
torchvision/transforms/v2/functional/_geometry.py
View file @
d4d20f01
...
...
@@ -71,7 +71,7 @@ def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
return
horizontal_flip_image_tensor
(
video
)
def
horizontal_flip
(
inpt
:
datapoints
.
InputTypeJIT
)
->
datapoints
.
InputTypeJIT
:
def
horizontal_flip
(
inpt
:
datapoints
.
_
InputTypeJIT
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
horizontal_flip
)
...
...
@@ -120,7 +120,7 @@ def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
return
vertical_flip_image_tensor
(
video
)
def
vertical_flip
(
inpt
:
datapoints
.
InputTypeJIT
)
->
datapoints
.
InputTypeJIT
:
def
vertical_flip
(
inpt
:
datapoints
.
_
InputTypeJIT
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
vertical_flip
)
...
...
@@ -255,12 +255,12 @@ def resize_video(
def
resize
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
size
:
List
[
int
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
max_size
:
Optional
[
int
]
=
None
,
antialias
:
Optional
[
Union
[
str
,
bool
]]
=
"warn"
,
)
->
datapoints
.
InputTypeJIT
:
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
resize
)
if
torch
.
jit
.
is_scripting
()
or
is_simple_tensor
(
inpt
):
...
...
@@ -428,7 +428,7 @@ def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[in
def
_apply_grid_transform
(
img
:
torch
.
Tensor
,
grid
:
torch
.
Tensor
,
mode
:
str
,
fill
:
datapoints
.
FillTypeJIT
img
:
torch
.
Tensor
,
grid
:
torch
.
Tensor
,
mode
:
str
,
fill
:
datapoints
.
_
FillTypeJIT
)
->
torch
.
Tensor
:
# We are using context knowledge that grid should have float dtype
...
...
@@ -470,7 +470,7 @@ def _assert_grid_transform_inputs(
image
:
torch
.
Tensor
,
matrix
:
Optional
[
List
[
float
]],
interpolation
:
str
,
fill
:
datapoints
.
FillTypeJIT
,
fill
:
datapoints
.
_
FillTypeJIT
,
supported_interpolation_modes
:
List
[
str
],
coeffs
:
Optional
[
List
[
float
]]
=
None
,
)
->
None
:
...
...
@@ -533,7 +533,7 @@ def affine_image_tensor(
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
torch
.
Tensor
:
interpolation
=
_check_interpolation
(
interpolation
)
...
...
@@ -585,7 +585,7 @@ def affine_image_pil(
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
PIL
.
Image
.
Image
:
interpolation
=
_check_interpolation
(
interpolation
)
...
...
@@ -721,7 +721,7 @@ def affine_mask(
translate
:
List
[
float
],
scale
:
float
,
shear
:
List
[
float
],
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
torch
.
Tensor
:
if
mask
.
ndim
<
3
:
...
...
@@ -754,7 +754,7 @@ def affine_video(
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
torch
.
Tensor
:
return
affine_image_tensor
(
...
...
@@ -770,15 +770,15 @@ def affine_video(
def
affine
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
angle
:
Union
[
int
,
float
],
translate
:
List
[
float
],
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
datapoints
.
InputTypeJIT
:
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
affine
)
...
...
@@ -822,7 +822,7 @@ def rotate_image_tensor(
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
torch
.
Tensor
:
interpolation
=
_check_interpolation
(
interpolation
)
...
...
@@ -867,7 +867,7 @@ def rotate_image_pil(
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
PIL
.
Image
.
Image
:
interpolation
=
_check_interpolation
(
interpolation
)
...
...
@@ -910,7 +910,7 @@ def rotate_mask(
angle
:
float
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
torch
.
Tensor
:
if
mask
.
ndim
<
3
:
mask
=
mask
.
unsqueeze
(
0
)
...
...
@@ -939,19 +939,19 @@ def rotate_video(
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
torch
.
Tensor
:
return
rotate_image_tensor
(
video
,
angle
,
interpolation
=
interpolation
,
expand
=
expand
,
fill
=
fill
,
center
=
center
)
def
rotate
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
angle
:
float
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
)
->
datapoints
.
InputTypeJIT
:
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
rotate
)
...
...
@@ -1156,11 +1156,11 @@ def pad_video(
def
pad
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
padding
:
List
[
int
],
fill
:
Optional
[
Union
[
int
,
float
,
List
[
float
]]]
=
None
,
padding_mode
:
str
=
"constant"
,
)
->
datapoints
.
InputTypeJIT
:
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
pad
)
...
...
@@ -1239,7 +1239,7 @@ def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int
return
crop_image_tensor
(
video
,
top
,
left
,
height
,
width
)
def
crop
(
inpt
:
datapoints
.
InputTypeJIT
,
top
:
int
,
left
:
int
,
height
:
int
,
width
:
int
)
->
datapoints
.
InputTypeJIT
:
def
crop
(
inpt
:
datapoints
.
_
InputTypeJIT
,
top
:
int
,
left
:
int
,
height
:
int
,
width
:
int
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
crop
)
...
...
@@ -1308,7 +1308,7 @@ def perspective_image_tensor(
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
torch
.
Tensor
:
perspective_coeffs
=
_perspective_coefficients
(
startpoints
,
endpoints
,
coefficients
)
...
...
@@ -1355,7 +1355,7 @@ def perspective_image_pil(
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BICUBIC
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
PIL
.
Image
.
Image
:
perspective_coeffs
=
_perspective_coefficients
(
startpoints
,
endpoints
,
coefficients
)
...
...
@@ -1461,7 +1461,7 @@ def perspective_mask(
mask
:
torch
.
Tensor
,
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
torch
.
Tensor
:
if
mask
.
ndim
<
3
:
...
...
@@ -1485,7 +1485,7 @@ def perspective_video(
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
torch
.
Tensor
:
return
perspective_image_tensor
(
...
...
@@ -1494,13 +1494,13 @@ def perspective_video(
def
perspective
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
datapoints
.
InputTypeJIT
:
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
perspective
)
if
torch
.
jit
.
is_scripting
()
or
is_simple_tensor
(
inpt
):
...
...
@@ -1526,7 +1526,7 @@ def elastic_image_tensor(
image
:
torch
.
Tensor
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
torch
.
Tensor
:
interpolation
=
_check_interpolation
(
interpolation
)
...
...
@@ -1583,7 +1583,7 @@ def elastic_image_pil(
image
:
PIL
.
Image
.
Image
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
PIL
.
Image
.
Image
:
t_img
=
pil_to_tensor
(
image
)
output
=
elastic_image_tensor
(
t_img
,
displacement
,
interpolation
=
interpolation
,
fill
=
fill
)
...
...
@@ -1656,7 +1656,7 @@ def elastic_bounding_box(
def
elastic_mask
(
mask
:
torch
.
Tensor
,
displacement
:
torch
.
Tensor
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
torch
.
Tensor
:
if
mask
.
ndim
<
3
:
mask
=
mask
.
unsqueeze
(
0
)
...
...
@@ -1676,17 +1676,17 @@ def elastic_video(
video
:
torch
.
Tensor
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
torch
.
Tensor
:
return
elastic_image_tensor
(
video
,
displacement
,
interpolation
=
interpolation
,
fill
=
fill
)
def
elastic
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
datapoints
.
FillTypeJIT
=
None
,
)
->
datapoints
.
InputTypeJIT
:
fill
:
datapoints
.
_
FillTypeJIT
=
None
,
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
elastic
)
...
...
@@ -1802,7 +1802,7 @@ def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tens
return
center_crop_image_tensor
(
video
,
output_size
)
def
center_crop
(
inpt
:
datapoints
.
InputTypeJIT
,
output_size
:
List
[
int
])
->
datapoints
.
InputTypeJIT
:
def
center_crop
(
inpt
:
datapoints
.
_
InputTypeJIT
,
output_size
:
List
[
int
])
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
center_crop
)
...
...
@@ -1888,7 +1888,7 @@ def resized_crop_video(
def
resized_crop
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
top
:
int
,
left
:
int
,
height
:
int
,
...
...
@@ -1896,7 +1896,7 @@ def resized_crop(
size
:
List
[
int
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
antialias
:
Optional
[
Union
[
str
,
bool
]]
=
"warn"
,
)
->
datapoints
.
InputTypeJIT
:
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
resized_crop
)
...
...
@@ -1972,7 +1972,7 @@ def five_crop_video(
return
five_crop_image_tensor
(
video
,
size
)
ImageOrVideoTypeJIT
=
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
]
ImageOrVideoTypeJIT
=
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
]
def
five_crop
(
...
...
@@ -2069,7 +2069,7 @@ def ten_crop_video(
def
ten_crop
(
inpt
:
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
],
size
:
List
[
int
],
vertical_flip
:
bool
=
False
inpt
:
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
],
size
:
List
[
int
],
vertical_flip
:
bool
=
False
)
->
Tuple
[
ImageOrVideoTypeJIT
,
ImageOrVideoTypeJIT
,
...
...
torchvision/transforms/v2/functional/_meta.py
View file @
d4d20f01
...
...
@@ -27,7 +27,7 @@ def get_dimensions_image_tensor(image: torch.Tensor) -> List[int]:
get_dimensions_image_pil
=
_FP
.
get_dimensions
def
get_dimensions
(
inpt
:
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
])
->
List
[
int
]:
def
get_dimensions
(
inpt
:
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
])
->
List
[
int
]:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
get_dimensions
)
...
...
@@ -64,7 +64,7 @@ def get_num_channels_video(video: torch.Tensor) -> int:
return
get_num_channels_image_tensor
(
video
)
def
get_num_channels
(
inpt
:
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
])
->
int
:
def
get_num_channels
(
inpt
:
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
])
->
int
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
get_num_channels
)
...
...
@@ -114,7 +114,7 @@ def get_spatial_size_bounding_box(bounding_box: datapoints.BoundingBox) -> List[
return
list
(
bounding_box
.
spatial_size
)
def
get_spatial_size
(
inpt
:
datapoints
.
InputTypeJIT
)
->
List
[
int
]:
def
get_spatial_size
(
inpt
:
datapoints
.
_
InputTypeJIT
)
->
List
[
int
]:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
get_spatial_size
)
...
...
@@ -135,7 +135,7 @@ def get_num_frames_video(video: torch.Tensor) -> int:
return
video
.
shape
[
-
4
]
def
get_num_frames
(
inpt
:
datapoints
.
VideoTypeJIT
)
->
int
:
def
get_num_frames
(
inpt
:
datapoints
.
_
VideoTypeJIT
)
->
int
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
get_num_frames
)
...
...
@@ -208,11 +208,11 @@ def _convert_format_bounding_box(
def
convert_format_bounding_box
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
old_format
:
Optional
[
BoundingBoxFormat
]
=
None
,
new_format
:
Optional
[
BoundingBoxFormat
]
=
None
,
inplace
:
bool
=
False
,
)
->
datapoints
.
InputTypeJIT
:
)
->
datapoints
.
_
InputTypeJIT
:
# This being a kernel / dispatcher hybrid, we need an option to pass `old_format` explicitly for simple tensor
# inputs as well as extract it from `datapoints.BoundingBox` inputs. However, putting a default value on
# `old_format` means we also need to put one on `new_format` to have syntactically correct Python. Here we mimic the
...
...
@@ -259,10 +259,10 @@ def _clamp_bounding_box(
def
clamp_bounding_box
(
inpt
:
datapoints
.
InputTypeJIT
,
inpt
:
datapoints
.
_
InputTypeJIT
,
format
:
Optional
[
BoundingBoxFormat
]
=
None
,
spatial_size
:
Optional
[
Tuple
[
int
,
int
]]
=
None
,
)
->
datapoints
.
InputTypeJIT
:
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
clamp_bounding_box
)
...
...
@@ -355,7 +355,7 @@ def convert_dtype_video(video: torch.Tensor, dtype: torch.dtype = torch.float) -
def
convert_dtype
(
inpt
:
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
],
dtype
:
torch
.
dtype
=
torch
.
float
inpt
:
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
],
dtype
:
torch
.
dtype
=
torch
.
float
)
->
torch
.
Tensor
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
convert_dtype
)
...
...
torchvision/transforms/v2/functional/_misc.py
View file @
d4d20f01
...
...
@@ -53,7 +53,7 @@ def normalize_video(video: torch.Tensor, mean: List[float], std: List[float], in
def
normalize
(
inpt
:
Union
[
datapoints
.
TensorImageTypeJIT
,
datapoints
.
TensorVideoTypeJIT
],
inpt
:
Union
[
datapoints
.
_
TensorImageTypeJIT
,
datapoints
.
_
TensorVideoTypeJIT
],
mean
:
List
[
float
],
std
:
List
[
float
],
inplace
:
bool
=
False
,
...
...
@@ -166,8 +166,8 @@ def gaussian_blur_video(
def
gaussian_blur
(
inpt
:
datapoints
.
InputTypeJIT
,
kernel_size
:
List
[
int
],
sigma
:
Optional
[
List
[
float
]]
=
None
)
->
datapoints
.
InputTypeJIT
:
inpt
:
datapoints
.
_
InputTypeJIT
,
kernel_size
:
List
[
int
],
sigma
:
Optional
[
List
[
float
]]
=
None
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
gaussian_blur
)
...
...
torchvision/transforms/v2/functional/_temporal.py
View file @
d4d20f01
...
...
@@ -14,7 +14,7 @@ def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> t
return
torch
.
index_select
(
video
,
-
4
,
indices
)
def
uniform_temporal_subsample
(
inpt
:
datapoints
.
VideoTypeJIT
,
num_samples
:
int
)
->
datapoints
.
VideoTypeJIT
:
def
uniform_temporal_subsample
(
inpt
:
datapoints
.
_
VideoTypeJIT
,
num_samples
:
int
)
->
datapoints
.
_
VideoTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
uniform_temporal_subsample
)
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment