Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
bf491463
Commit
bf491463
authored
May 30, 2025
by
limm
Browse files
add v0.19.1 release
parent
e17f5ea2
Changes
677
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1346 additions
and
798 deletions
+1346
-798
docs/Makefile
docs/Makefile
+3
-1
docs/requirements.txt
docs/requirements.txt
+6
-4
docs/source/_static/css/custom_torchvision.css
docs/source/_static/css/custom_torchvision.css
+25
-2
docs/source/_static/img/pytorch-logo-flame.svg
docs/source/_static/img/pytorch-logo-flame.svg
+1
-1
docs/source/_templates/class.rst
docs/source/_templates/class.rst
+9
-0
docs/source/_templates/class_dataset.rst
docs/source/_templates/class_dataset.rst
+12
-0
docs/source/_templates/function.rst
docs/source/_templates/function.rst
+8
-0
docs/source/beta_status.py
docs/source/beta_status.py
+21
-0
docs/source/conf.py
docs/source/conf.py
+317
-83
docs/source/datasets.rst
docs/source/datasets.rst
+144
-221
docs/source/docutils.conf
docs/source/docutils.conf
+3
-0
docs/source/feature_extraction.rst
docs/source/feature_extraction.rst
+166
-0
docs/source/index.rst
docs/source/index.rst
+14
-5
docs/source/io.rst
docs/source/io.rst
+45
-37
docs/source/models.rst
docs/source/models.rst
+432
-444
docs/source/models/alexnet.rst
docs/source/models/alexnet.rst
+28
-0
docs/source/models/convnext.rst
docs/source/models/convnext.rst
+26
-0
docs/source/models/deeplabv3.rst
docs/source/models/deeplabv3.rst
+28
-0
docs/source/models/densenet.rst
docs/source/models/densenet.rst
+27
-0
docs/source/models/efficientnet.rst
docs/source/models/efficientnet.rst
+31
-0
No files found.
docs/Makefile
View file @
bf491463
...
...
@@ -24,7 +24,7 @@ docset: html
convert
$(SPHINXPROJ).docset/icon@2x.png
-resize
16x16
$(SPHINXPROJ).docset/icon.png
html-noplot
:
#
Avoids running the gallery examples
,
which may take time
$(SPHINXBUILD)
-D
plot_gallery
=
0
-b
html
$(ASPHINXOPTS)
"
${SOURCEDIR}
"
"
$(BUILDDIR)
"
/html
$(SPHINXBUILD)
-D
plot_gallery
=
0
-b
html
"
${SOURCEDIR}
"
"
$(BUILDDIR)
"
/html
@
echo
@
echo
"Build finished. The HTML pages are in
$(BUILDDIR)
/html."
...
...
@@ -32,6 +32,8 @@ clean:
rm
-rf
$(BUILDDIR)
/
*
rm
-rf
$(SOURCEDIR)
/auto_examples/
# sphinx-gallery
rm
-rf
$(SOURCEDIR)
/gen_modules/
# sphinx-gallery
rm
-rf
$(SOURCEDIR)
/generated/
# autosummary
rm
-rf
$(SOURCEDIR)
/models/generated
# autosummary
.PHONY
:
help Makefile docset
...
...
docs/requirements.txt
View file @
bf491463
sphinx==2.4.4
sphinx-gallery>=0.9.0
sphinx-copybutton>=0.3.1
matplotlib
numpy
-e git+git://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
sphinx-copybutton>=0.3.1
sphinx-gallery>=0.11.1
sphinx==5.0.0
tabulate
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
pycocotools
docs/source/_static/css/custom_torchvision.css
View file @
bf491463
/* This rule
(and possibly this entire file)
should be removed once
/* This rule should be removed once
https://github.com/pytorch/pytorch_sphinx_theme/issues/125 is fixed.
We override the rule so that the links to the notebooks aren't hidden in the
...
...
@@ -9,4 +9,27 @@ torchvision it just hides the links. So we have to put them back here */
article
.pytorch-article
.sphx-glr-download-link-note.admonition.note
,
article
.pytorch-article
.reference.download.internal
,
article
.pytorch-article
.sphx-glr-signature
{
display
:
block
;
}
\ No newline at end of file
}
/* These 2 rules below are for the weight tables (generated in conf.py) to look
* better. In particular we make their row height shorter */
.table-weights
td
,
.table-weights
th
{
margin-bottom
:
0.2rem
;
padding
:
0
!important
;
line-height
:
1
!important
;
}
.table-weights
p
{
margin-bottom
:
0.2rem
!important
;
}
/* Fix for Sphinx gallery 0.11
See https://github.com/sphinx-gallery/sphinx-gallery/issues/990
*/
article
.pytorch-article
.sphx-glr-thumbnails
.sphx-glr-thumbcontainer
{
width
:
unset
;
margin-right
:
0
;
margin-left
:
0
;
}
article
.pytorch-article
div
.section
div
.wy-table-responsive
tbody
td
{
width
:
50%
;
}
docs/source/_static/img/pytorch-logo-flame.svg
View file @
bf491463
...
...
@@ -30,4 +30,4 @@
style=
"fill:#9e529f"
id=
"path4698"
d=
"m 24.075479,-7.6293945e-7 c -0.5,0 -1.8,2.49999996293945 -1.8,3.59999996293945 0,1.5 1,2 1.8,2 0.8,0 1.8,-0.5 1.8,-2 -0.1,-1.1 -1.4,-3.59999996293945 -1.8,-3.59999996293945 z"
class=
"st1"
/></svg>
\ No newline at end of file
class=
"st1"
/></svg>
docs/source/_templates/class.rst
0 → 100644
View file @
bf491463
.. role:: hidden
:class: hidden-section
.. currentmodule:: {{ module }}
{{ name | underline}}
.. autoclass:: {{ name }}
:members:
docs/source/_templates/class_dataset.rst
0 → 100644
View file @
bf491463
.. role:: hidden
:class: hidden-section
.. currentmodule:: {{ module }}
{{ name | underline}}
.. autoclass:: {{ name }}
:members:
__getitem__,
{% if "category_name" in methods %} category_name {% endif %}
:special-members:
docs/source/_templates/function.rst
0 → 100644
View file @
bf491463
.. role:: hidden
:class: hidden-section
.. currentmodule:: {{ module }}
{{ name | underline}}
.. autofunction:: {{ name }}
docs/source/beta_status.py
0 → 100644
View file @
bf491463
from
docutils
import
nodes
from
docutils.parsers.rst
import
Directive
class
BetaStatus
(
Directive
):
has_content
=
True
text
=
"The {api_name} is in Beta stage, and backward compatibility is not guaranteed."
node
=
nodes
.
warning
def
run
(
self
):
text
=
self
.
text
.
format
(
api_name
=
" "
.
join
(
self
.
content
))
return
[
self
.
node
(
""
,
nodes
.
paragraph
(
""
,
""
,
nodes
.
Text
(
text
)))]
def
setup
(
app
):
app
.
add_directive
(
"betastatus"
,
BetaStatus
)
return
{
"version"
:
"0.1"
,
"parallel_read_safe"
:
True
,
"parallel_write_safe"
:
True
,
}
docs/source/conf.py
View file @
bf491463
This diff is collapsed.
Click to expand it.
docs/source/datasets.rst
View file @
bf491463
torchvision.datasets
====================
.. _datasets:
Datasets
========
Torchvision provides many built-in datasets in the ``torchvision.datasets``
module, as well as utility classes for building your own datasets.
Built-in datasets
-----------------
All datasets are subclasses of :class:`torch.utils.data.Dataset`
i.e, they have ``__getitem__`` and ``__len__`` methods implemented.
...
...
@@ -19,242 +27,157 @@ All the datasets have almost similar API. They all have two common arguments:
``transform`` and ``target_transform`` to transform the input and target respectively.
You can also create your own datasets using the provided :ref:`base classes <base_classes_datasets>`.
Caltech
~~~~~~~
.. autoclass:: Caltech101
:members: __getitem__
:special-members:
.. autoclass:: Caltech256
:members: __getitem__
:special-members:
CelebA
~~~~~~
.. autoclass:: CelebA
:members: __getitem__
:special-members:
CIFAR
~~~~~
.. autoclass:: CIFAR10
:members: __getitem__
:special-members:
.. autoclass:: CIFAR100
Cityscapes
~~~~~~~~~~
.. note ::
Requires Cityscape to be downloaded.
.. autoclass:: Cityscapes
:members: __getitem__
:special-members:
COCO
~~~~
.. note ::
These require the `COCO API to be installed`_
.. _COCO API to be installed: https://github.com/pdollar/coco/tree/master/PythonAPI
Captions
^^^^^^^^
.. autoclass:: CocoCaptions
:members: __getitem__
:special-members:
Detection
^^^^^^^^^
.. autoclass:: CocoDetection
:members: __getitem__
:special-members:
EMNIST
~~~~~~
.. autoclass:: EMNIST
FakeData
~~~~~~~~
.. autoclass:: FakeData
Fashion-MNIST
~~~~~~~~~~~~~
.. autoclass:: FashionMNIST
Flickr
~~~~~~
.. autoclass:: Flickr8k
:members: __getitem__
:special-members:
.. autoclass:: Flickr30k
:members: __getitem__
:special-members:
HMDB51
~~~~~~~
.. autoclass:: HMDB51
:members: __getitem__
:special-members:
ImageNet
~~~~~~~~~~~
.. autoclass:: ImageNet
.. note ::
This requires `scipy` to be installed
Kinetics-400
Image classification
~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
:template: class_dataset.rst
Caltech101
Caltech256
CelebA
CIFAR10
CIFAR100
Country211
DTD
EMNIST
EuroSAT
FakeData
FashionMNIST
FER2013
FGVCAircraft
Flickr8k
Flickr30k
Flowers102
Food101
GTSRB
INaturalist
ImageNet
Imagenette
KMNIST
LFWPeople
LSUN
MNIST
Omniglot
OxfordIIITPet
Places365
PCAM
QMNIST
RenderedSST2
SEMEION
SBU
StanfordCars
STL10
SUN397
SVHN
USPS
Image detection or segmentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
:template: class_dataset.rst
CocoDetection
CelebA
Cityscapes
Kitti
OxfordIIITPet
SBDataset
VOCSegmentation
VOCDetection
WIDERFace
Optical Flow
~~~~~~~~~~~~
.. autoclass:: Kinetics400
:members: __getitem__
:special-members:
KITTI
~~~~~~~~~
.. autoclass:: Kitti
:members: __getitem__
:special-members:
KMNIST
~~~~~~~~~~~~~
.. autoclass:: KMNIST
LSUN
~~~~
.. autoclass:: LSUN
:members: __getitem__
:special-members:
MNIST
~~~~~
.. autoclass:: MNIST
Omniglot
~~~~~~~~
.. autoclass:: Omniglot
PhotoTour
~~~~~~~~~
.. autoclass:: PhotoTour
:members: __getitem__
:special-members:
Places365
~~~~~~~~~
.. autoclass:: Places365
:members: __getitem__
:special-members:
QMNIST
~~~~~~
.. autoclass:: QMNIST
SBD
~~~~~~
.. autoclass:: SBDataset
:members: __getitem__
:special-members:
SBU
~~~
.. autoclass:: SBU
:members: __getitem__
:special-members:
SEMEION
~~~~~~~
.. autoclass:: SEMEION
:members: __getitem__
:special-members:
STL10
~~~~~
.. autoclass:: STL10
:members: __getitem__
:special-members:
SVHN
~~~~~
.. autosummary::
:toctree: generated/
:template: class_dataset.rst
FlyingChairs
FlyingThings3D
HD1K
KittiFlow
Sintel
Stereo Matching
~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated/
:template: class_dataset.rst
CarlaStereo
Kitti2012Stereo
Kitti2015Stereo
CREStereo
FallingThingsStereo
SceneFlowStereo
SintelStereo
InStereo2k
ETH3DStereo
Middlebury2014Stereo
Image pairs
~~~~~~~~~~~
.. auto
class:: SVHN
:
members: __getitem__
:
special-membe
rs
:
.. auto
summary::
:
toctree: generated/
:
template: class_dataset.
rs
t
UCF101
~~~~~~~
LFWPairs
PhotoTour
.. autoclass:: UCF101
:members: __getitem__
:special-members:
Image captioning
~~~~~~~~~~~~~~~~
USPS
~~~~~
.. autosummary::
:toctree: generated/
:template: class_dataset.rst
.. autoclass:: USPS
:members: __getitem__
:special-members:
CocoCaptions
V
OC
~~~~~~
V
ideo classification
~~~~~~
~~~~~~~~~~~~~~
.. auto
class:: VOCSegmentation
:
members: __getitem__
:
special-membe
rs
:
.. auto
summary::
:
toctree: generated/
:
template: class_dataset.
rs
t
.. autoclass:: VOCDetection
:members: __getitem__
:special-members:
HMDB51
Kinetics
UCF101
WIDERFace
~~~~~~~~~
Video prediction
~~~~~~~~~
~~~~~~~~~~~
.. auto
class:: WIDERFace
:
members: __getitem__
:
special-membe
rs
:
.. auto
summary::
:
toctree: generated/
:
template: class_dataset.
rs
t
MovingMNIST
.. _base_classes_datasets:
Base classes for custom datasets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--------------------------------
.. autosummary::
:toctree: generated/
:template: class.rst
DatasetFolder
ImageFolder
VisionDataset
.. autoclass:: DatasetFolder
:members: __getitem__, find_classes, make_dataset
:special-members:
Transforms v2
-------------
.. autosummary::
:toctree: generated/
:template: function.rst
.. autoclass:: ImageFolder
:members: __getitem__
:special-members:
wrap_dataset_for_transforms_v2
docs/source/docutils.conf
0 → 100644
View file @
bf491463
# Necessary for the table generated by autosummary to look decent
[
html
writers
]
table_style
:
colwidths
-
auto
docs/source/feature_extraction.rst
0 → 100644
View file @
bf491463
Feature
extraction
for
model
inspection
=======================================
..
currentmodule
::
torchvision
.
models
.
feature_extraction
The
``
torchvision
.
models
.
feature_extraction
``
package
contains
feature
extraction
utilities
that
let
us
tap
into
our
models
to
access
intermediate
transformations
of
our
inputs
.
This
could
be
useful
for
a
variety
of
applications
in
computer
vision
.
Just
a
few
examples
are
:
-
Visualizing
feature
maps
.
-
Extracting
features
to
compute
image
descriptors
for
tasks
like
facial
recognition
,
copy
-
detection
,
or
image
retrieval
.
-
Passing
selected
features
to
downstream
sub
-
networks
for
end
-
to
-
end
training
with
a
specific
task
in
mind
.
For
example
,
passing
a
hierarchy
of
features
to
a
Feature
Pyramid
Network
with
object
detection
heads
.
Torchvision
provides
:
func
:`
create_feature_extractor
`
for
this
purpose
.
It
works
by
following
roughly
these
steps
:
1.
Symbolically
tracing
the
model
to
get
a
graphical
representation
of
how
it
transforms
the
input
,
step
by
step
.
2.
Setting
the
user
-
selected
graph
nodes
as
outputs
.
3.
Removing
all
redundant
nodes
(
anything
downstream
of
the
output
nodes
).
4.
Generating
python
code
from
the
resulting
graph
and
bundling
that
into
a
PyTorch
module
together
with
the
graph
itself
.
|
The
`
torch
.
fx
documentation
<
https
://
pytorch
.
org
/
docs
/
stable
/
fx
.
html
>`
_
provides
a
more
general
and
detailed
explanation
of
the
above
procedure
and
the
inner
workings
of
the
symbolic
tracing
.
..
_about
-
node
-
names
:
**
About
Node
Names
**
In
order
to
specify
which
nodes
should
be
output
nodes
for
extracted
features
,
one
should
be
familiar
with
the
node
naming
convention
used
here
(
which
differs
slightly
from
that
used
in
``
torch
.
fx
``).
A
node
name
is
specified
as
a
``.``
separated
path
walking
the
module
hierarchy
from
top
level
module
down
to
leaf
operation
or
leaf
module
.
For
instance
``
"layer4.2.relu"
``
in
ResNet
-
50
represents
the
output
of
the
ReLU
of
the
2
nd
block
of
the
4
th
layer
of
the
``
ResNet
``
module
.
Here
are
some
finer
points
to
keep
in
mind
:
-
When
specifying
node
names
for
:
func
:`
create_feature_extractor
`,
you
may
provide
a
truncated
version
of
a
node
name
as
a
shortcut
.
To
see
how
this
works
,
try
creating
a
ResNet
-
50
model
and
printing
the
node
names
with
``
train_nodes
,
_
=
get_graph_node_names
(
model
)
print
(
train_nodes
)``
and
observe
that
the
last
node
pertaining
to
``
layer4
``
is
``
"layer4.2.relu_2"
``.
One
may
specify
``
"layer4.2.relu_2"
``
as
the
return
node
,
or
just
``
"layer4"
``
as
this
,
by
convention
,
refers
to
the
last
node
(
in
order
of
execution
)
of
``
layer4
``.
-
If
a
certain
module
or
operation
is
repeated
more
than
once
,
node
names
get
an
additional
``
_
{
int
}``
postfix
to
disambiguate
.
For
instance
,
maybe
the
addition
(``+``)
operation
is
used
three
times
in
the
same
``
forward
``
method
.
Then
there
would
be
``
"path.to.module.add"
``,
``
"path.to.module.add_1"
``,
``
"path.to.module.add_2"
``.
The
counter
is
maintained
within
the
scope
of
the
direct
parent
.
So
in
ResNet
-
50
there
is
a
``
"layer4.1.add"
``
and
a
``
"layer4.2.add"
``.
Because
the
addition
operations
reside
in
different
blocks
,
there
is
no
need
for
a
postfix
to
disambiguate
.
**
An
Example
**
Here
is
an
example
of
how
we
might
extract
features
for
MaskRCNN
:
..
code
-
block
::
python
import
torch
from
torchvision
.
models
import
resnet50
from
torchvision
.
models
.
feature_extraction
import
get_graph_node_names
from
torchvision
.
models
.
feature_extraction
import
create_feature_extractor
from
torchvision
.
models
.
detection
.
mask_rcnn
import
MaskRCNN
from
torchvision
.
models
.
detection
.
backbone_utils
import
LastLevelMaxPool
from
torchvision
.
ops
.
feature_pyramid_network
import
FeaturePyramidNetwork
#
To
assist
you
in
designing
the
feature
extractor
you
may
want
to
print
out
#
the
available
nodes
for
resnet50
.
m
=
resnet50
()
train_nodes
,
eval_nodes
=
get_graph_node_names
(
resnet50
())
#
The
lists
returned
,
are
the
names
of
all
the
graph
nodes
(
in
order
of
#
execution
)
for
the
input
model
traced
in
train
mode
and
in
eval
mode
#
respectively
.
You
'll find that `train_nodes` and `eval_nodes` are the same
# for this example. But if the model contains control flow that'
s
dependent
#
on
the
training
mode
,
they
may
be
different
.
#
To
specify
the
nodes
you
want
to
extract
,
you
could
select
the
final
node
#
that
appears
in
each
of
the
main
layers
:
return_nodes
=
{
#
node_name
:
user
-
specified
key
for
output
dict
'layer1.2.relu_2'
:
'layer1'
,
'layer2.3.relu_2'
:
'layer2'
,
'layer3.5.relu_2'
:
'layer3'
,
'layer4.2.relu_2'
:
'layer4'
,
}
#
But
`
create_feature_extractor
`
can
also
accept
truncated
node
specifications
#
like
"layer1"
,
as
it
will
just
pick
the
last
node
that
's a descendent of
# of the specification. (Tip: be careful with this, especially when a layer
# has multiple outputs. It'
s
not
always
guaranteed
that
the
last
operation
#
performed
is
the
one
that
corresponds
to
the
output
you
desire
.
You
should
#
consult
the
source
code
for
the
input
model
to
confirm
.)
return_nodes
=
{
'layer1'
:
'layer1'
,
'layer2'
:
'layer2'
,
'layer3'
:
'layer3'
,
'layer4'
:
'layer4'
,
}
#
Now
you
can
build
the
feature
extractor
.
This
returns
a
module
whose
forward
#
method
returns
a
dictionary
like
:
#
{
#
'layer1'
:
output
of
layer
1
,
#
'layer2'
:
output
of
layer
2
,
#
'layer3'
:
output
of
layer
3
,
#
'layer4'
:
output
of
layer
4
,
#
}
create_feature_extractor
(
m
,
return_nodes
=
return_nodes
)
#
Let
's put all that together to wrap resnet50 with MaskRCNN
# MaskRCNN requires a backbone with an attached FPN
class Resnet50WithFPN(torch.nn.Module):
def __init__(self):
super(Resnet50WithFPN, self).__init__()
# Get a resnet50 backbone
m = resnet50()
# Extract 4 main layers (note: MaskRCNN needs this particular name
# mapping for return nodes)
self.body = create_feature_extractor(
m, return_nodes={f'
layer
{
k
}
': str(v)
for v, k in enumerate([1, 2, 3, 4])})
# Dry run to get number of channels for FPN
inp = torch.randn(2, 3, 224, 224)
with torch.no_grad():
out = self.body(inp)
in_channels_list = [o.shape[1] for o in out.values()]
# Build FPN
self.out_channels = 256
self.fpn = FeaturePyramidNetwork(
in_channels_list, out_channels=self.out_channels,
extra_blocks=LastLevelMaxPool())
def forward(self, x):
x = self.body(x)
x = self.fpn(x)
return x
# Now we can build our model!
model = MaskRCNN(Resnet50WithFPN(), num_classes=91).eval()
API Reference
-------------
.. autosummary::
:toctree: generated/
:template: function.rst
create_feature_extractor
get_graph_node_names
docs/source/index.rst
View file @
bf491463
...
...
@@ -31,18 +31,21 @@ architectures, and common image transformations for computer vision.
:maxdepth: 2
:caption: Package Reference
datasets
io
models
ops
transforms
tv_tensors
models
datasets
utils
ops
io
feature_extraction
.. toctree::
:maxdepth: 1
:caption: Examples
:caption: Examples
and training references
auto_examples/index
training_references
.. automodule:: torchvision
:members:
...
...
@@ -58,3 +61,9 @@ architectures, and common image transformations for computer vision.
TorchElastic <https://pytorch.org/elastic/>
TorchServe <https://pytorch.org/serve>
PyTorch on XLA Devices <http://pytorch.org/xla/>
Indices
-------
* :ref:`genindex`
docs/source/io.rst
View file @
bf491463
torchvision.io
==============
Decoding / Encoding images and videos
==============
=======================
.. currentmodule:: torchvision.io
The :mod:`torchvision.io` package provides functions for performing IO
operations. They are currently specific to reading and writing video and
images.
operations. They are currently specific to reading and writing images and
videos.
Images
------
.. autosummary::
:toctree: generated/
:template: function.rst
read_image
decode_image
encode_jpeg
decode_jpeg
write_jpeg
decode_gif
encode_png
decode_png
write_png
read_file
write_file
.. autosummary::
:toctree: generated/
:template: class.rst
ImageReadMode
Video
-----
.. auto
function:: read_video
.. autofunction:: read_video_timestamps
.. auto
summary::
:toctree: generated/
:template: function.rst
.. autofunction:: write_video
read_video
read_video_timestamps
write_video
Fine-grained video API
----------------------
^^^^^^^^^^^^^^^^^^^^^^
In addition to the :mod:`read_video` function, we provide a high-performance
lower-level API for more fine-grained control compared to the :mod:`read_video` function.
It does all this whilst fully supporting torchscript.
.. autoclass:: VideoReader
:members: __next__, get_metadata, set_current_stream, seek
.. betastatus:: fine-grained video API
.. autosummary::
:toctree: generated/
:template: class.rst
VideoReader
Example of inspecting a video:
...
...
@@ -54,29 +88,3 @@ Example of inspecting a video:
# the constructor we select a default video stream, but
# in practice, we can set whichever stream we would like
video.set_current_stream("video:0")
Image
-----
.. autoclass:: ImageReadMode
.. autofunction:: read_image
.. autofunction:: decode_image
.. autofunction:: encode_jpeg
.. autofunction:: decode_jpeg
.. autofunction:: write_jpeg
.. autofunction:: encode_png
.. autofunction:: decode_png
.. autofunction:: write_png
.. autofunction:: read_file
.. autofunction:: write_file
docs/source/models.rst
View file @
bf491463
This diff is collapsed.
Click to expand it.
docs/source/models/alexnet.rst
0 → 100644
View file @
bf491463
AlexNet
=======
.. currentmodule:: torchvision.models
The AlexNet model was originally introduced in the
`ImageNet Classification with Deep Convolutional Neural Networks
<https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__
paper. The implemented architecture is slightly different from the original one,
and is based on `One weird trick for parallelizing convolutional neural networks
<https://arxiv.org/abs/1404.5997>`__.
Model builders
--------------
The following model builders can be used to instantiate an AlexNet model, with or
without pre-trained weights. All the model builders internally rely on the
``torchvision.models.alexnet.AlexNet`` base class. Please refer to the `source
code
<https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_ for
more details about this class.
.. autosummary::
:toctree: generated/
:template: function.rst
alexnet
docs/source/models/convnext.rst
0 → 100644
View file @
bf491463
ConvNeXt
========
.. currentmodule:: torchvision.models
The ConvNeXt model is based on the `A ConvNet for the 2020s
<https://arxiv.org/abs/2201.03545>`_ paper.
Model builders
--------------
The following model builders can be used to instantiate a ConvNeXt model, with or
without pre-trained weights. All the model builders internally rely on the
``torchvision.models.convnext.ConvNeXt`` base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py>`_ for
more details about this class.
.. autosummary::
:toctree: generated/
:template: function.rst
convnext_tiny
convnext_small
convnext_base
convnext_large
docs/source/models/deeplabv3.rst
0 → 100644
View file @
bf491463
DeepLabV3
=========
.. currentmodule:: torchvision.models.segmentation
The DeepLabV3 model is based on the `Rethinking Atrous Convolution for Semantic
Image Segmentation <https://arxiv.org/abs/1706.05587>`__ paper.
.. betastatus:: segmentation module
Model builders
--------------
The following model builders can be used to instantiate a DeepLabV3 model with
different backbones, with or without pre-trained weights. All the model builders
internally rely on the ``torchvision.models.segmentation.deeplabv3.DeepLabV3`` base class. Please
refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py>`_
for more details about this class.
.. autosummary::
:toctree: generated/
:template: function.rst
deeplabv3_mobilenet_v3_large
deeplabv3_resnet50
deeplabv3_resnet101
docs/source/models/densenet.rst
0 → 100644
View file @
bf491463
DenseNet
========
.. currentmodule:: torchvision.models
The DenseNet model is based on the `Densely Connected Convolutional Networks
<https://arxiv.org/abs/1608.06993>`_ paper.
Model builders
--------------
The following model builders can be used to instantiate a DenseNet model, with or
without pre-trained weights. All the model builders internally rely on the
``torchvision.models.densenet.DenseNet`` base class. Please refer to the `source
code
<https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_ for
more details about this class.
.. autosummary::
:toctree: generated/
:template: function.rst
densenet121
densenet161
densenet169
densenet201
docs/source/models/efficientnet.rst
0 → 100644
View file @
bf491463
EfficientNet
============
.. currentmodule:: torchvision.models
The EfficientNet model is based on the `EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks <https://arxiv.org/abs/1905.11946>`__
paper.
Model builders
--------------
The following model builders can be used to instantiate an EfficientNet model, with or
without pre-trained weights. All the model builders internally rely on the
``torchvision.models.efficientnet.EfficientNet`` base class. Please refer to the `source
code
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_ for
more details about this class.
.. autosummary::
:toctree: generated/
:template: function.rst
efficientnet_b0
efficientnet_b1
efficientnet_b2
efficientnet_b3
efficientnet_b4
efficientnet_b5
efficientnet_b6
efficientnet_b7
Prev
1
2
3
4
5
6
…
34
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment