Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
b8286712
Unverified
Commit
b8286712
authored
Aug 31, 2023
by
Philip Meier
Committed by
GitHub
Aug 31, 2023
Browse files
allow sequence fill for v2 AA scripted (#7919)
parent
96950a5c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
14 additions
and
11 deletions
+14
-11
test/test_transforms_v2_consistency.py
test/test_transforms_v2_consistency.py
+12
-9
torchvision/transforms/v2/_auto_augment.py
torchvision/transforms/v2/_auto_augment.py
+2
-2
No files found.
test/test_transforms_v2_consistency.py
View file @
b8286712
...
@@ -755,10 +755,11 @@ class TestAATransforms:
...
@@ -755,10 +755,11 @@ class TestAATransforms:
v2_transforms
.
InterpolationMode
.
BILINEAR
,
v2_transforms
.
InterpolationMode
.
BILINEAR
,
],
],
)
)
def
test_randaug_jit
(
self
,
interpolation
):
@
pytest
.
mark
.
parametrize
(
"fill"
,
[
None
,
85
,
(
10
,
-
10
,
10
),
0.7
,
[
0.0
,
0.0
,
0.0
],
[
1
],
1
])
def
test_randaug_jit
(
self
,
interpolation
,
fill
):
inpt
=
torch
.
randint
(
0
,
256
,
size
=
(
1
,
3
,
256
,
256
),
dtype
=
torch
.
uint8
)
inpt
=
torch
.
randint
(
0
,
256
,
size
=
(
1
,
3
,
256
,
256
),
dtype
=
torch
.
uint8
)
t_ref
=
legacy_transforms
.
RandAugment
(
interpolation
=
interpolation
,
num_ops
=
1
)
t_ref
=
legacy_transforms
.
RandAugment
(
interpolation
=
interpolation
,
num_ops
=
1
,
fill
=
fill
)
t
=
v2_transforms
.
RandAugment
(
interpolation
=
interpolation
,
num_ops
=
1
)
t
=
v2_transforms
.
RandAugment
(
interpolation
=
interpolation
,
num_ops
=
1
,
fill
=
fill
)
tt_ref
=
torch
.
jit
.
script
(
t_ref
)
tt_ref
=
torch
.
jit
.
script
(
t_ref
)
tt
=
torch
.
jit
.
script
(
t
)
tt
=
torch
.
jit
.
script
(
t
)
...
@@ -830,10 +831,11 @@ class TestAATransforms:
...
@@ -830,10 +831,11 @@ class TestAATransforms:
v2_transforms
.
InterpolationMode
.
BILINEAR
,
v2_transforms
.
InterpolationMode
.
BILINEAR
,
],
],
)
)
def
test_trivial_aug_jit
(
self
,
interpolation
):
@
pytest
.
mark
.
parametrize
(
"fill"
,
[
None
,
85
,
(
10
,
-
10
,
10
),
0.7
,
[
0.0
,
0.0
,
0.0
],
[
1
],
1
])
def
test_trivial_aug_jit
(
self
,
interpolation
,
fill
):
inpt
=
torch
.
randint
(
0
,
256
,
size
=
(
1
,
3
,
256
,
256
),
dtype
=
torch
.
uint8
)
inpt
=
torch
.
randint
(
0
,
256
,
size
=
(
1
,
3
,
256
,
256
),
dtype
=
torch
.
uint8
)
t_ref
=
legacy_transforms
.
TrivialAugmentWide
(
interpolation
=
interpolation
)
t_ref
=
legacy_transforms
.
TrivialAugmentWide
(
interpolation
=
interpolation
,
fill
=
fill
)
t
=
v2_transforms
.
TrivialAugmentWide
(
interpolation
=
interpolation
)
t
=
v2_transforms
.
TrivialAugmentWide
(
interpolation
=
interpolation
,
fill
=
fill
)
tt_ref
=
torch
.
jit
.
script
(
t_ref
)
tt_ref
=
torch
.
jit
.
script
(
t_ref
)
tt
=
torch
.
jit
.
script
(
t
)
tt
=
torch
.
jit
.
script
(
t
)
...
@@ -906,11 +908,12 @@ class TestAATransforms:
...
@@ -906,11 +908,12 @@ class TestAATransforms:
v2_transforms
.
InterpolationMode
.
BILINEAR
,
v2_transforms
.
InterpolationMode
.
BILINEAR
,
],
],
)
)
def
test_augmix_jit
(
self
,
interpolation
):
@
pytest
.
mark
.
parametrize
(
"fill"
,
[
None
,
85
,
(
10
,
-
10
,
10
),
0.7
,
[
0.0
,
0.0
,
0.0
],
[
1
],
1
])
def
test_augmix_jit
(
self
,
interpolation
,
fill
):
inpt
=
torch
.
randint
(
0
,
256
,
size
=
(
1
,
3
,
256
,
256
),
dtype
=
torch
.
uint8
)
inpt
=
torch
.
randint
(
0
,
256
,
size
=
(
1
,
3
,
256
,
256
),
dtype
=
torch
.
uint8
)
t_ref
=
legacy_transforms
.
AugMix
(
interpolation
=
interpolation
,
mixture_width
=
1
,
chain_depth
=
1
)
t_ref
=
legacy_transforms
.
AugMix
(
interpolation
=
interpolation
,
mixture_width
=
1
,
chain_depth
=
1
,
fill
=
fill
)
t
=
v2_transforms
.
AugMix
(
interpolation
=
interpolation
,
mixture_width
=
1
,
chain_depth
=
1
)
t
=
v2_transforms
.
AugMix
(
interpolation
=
interpolation
,
mixture_width
=
1
,
chain_depth
=
1
,
fill
=
fill
)
tt_ref
=
torch
.
jit
.
script
(
t_ref
)
tt_ref
=
torch
.
jit
.
script
(
t_ref
)
tt
=
torch
.
jit
.
script
(
t
)
tt
=
torch
.
jit
.
script
(
t
)
...
...
torchvision/transforms/v2/_auto_augment.py
View file @
b8286712
...
@@ -33,8 +33,8 @@ class _AutoAugmentBase(Transform):
...
@@ -33,8 +33,8 @@ class _AutoAugmentBase(Transform):
def
_extract_params_for_v1_transform
(
self
)
->
Dict
[
str
,
Any
]:
def
_extract_params_for_v1_transform
(
self
)
->
Dict
[
str
,
Any
]:
params
=
super
().
_extract_params_for_v1_transform
()
params
=
super
().
_extract_params_for_v1_transform
()
if
not
(
params
[
"fill"
]
is
None
or
isinstance
(
params
[
"fill"
],
(
int
,
float
))
):
if
isinstance
(
params
[
"fill"
],
dict
):
raise
ValueError
(
f
"
{
type
(
self
).
__name__
}
() can
only
be scripted for
a scalar `fill`, but got
{
self
.
fill
}
."
)
raise
ValueError
(
f
"
{
type
(
self
).
__name__
}
() can
not
be scripted for
when `fill` is a dictionary
."
)
return
params
return
params
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment