"docs/source/vscode:/vscode.git/clone" did not exist on "5549c70d337168414879bcd95f32daf817d72576"
Unverified Commit ad3c3f78 authored by Vasilis Vryniotis's avatar Vasilis Vryniotis Committed by GitHub
Browse files

Adding docs for RandAugment (#4349)

* Adding docs for RandAugment.

* Fix docs.
parent 5a815541
......@@ -214,8 +214,8 @@ Generic Transforms
:members:
AutoAugment Transforms
----------------------
Automatic Augmentation Transforms
---------------------------------
`AutoAugment <https://arxiv.org/pdf/1805.09501.pdf>`_ is a common Data Augmentation technique that can improve the accuracy of Image Classification models.
Though the data augmentation policies are directly linked to their trained dataset, empirical studies show that
......@@ -229,6 +229,10 @@ The new transform can be used standalone or mixed-and-matched with existing tran
.. autoclass:: AutoAugment
:members:
`RandAugment <https://arxiv.org/abs/1909.13719>`_ is a simple high-performing Data Augmentation technique which improves the accuracy of Image Classification models.
.. autoclass:: RandAugment
:members:
.. _functional_transforms:
......
......@@ -245,6 +245,14 @@ imgs = [
row_title = [str(policy).split('.')[-1] for policy in policies]
plot(imgs, row_title=row_title)
####################################
# RandAugment
# ~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandAugment` transform automatically augments the data.
augmenter = T.RandAugment()
imgs = [augmenter(orig_img) for _ in range(4)]
plot(imgs)
####################################
# Randomly-applied transforms
# ---------------------------
......
......@@ -245,7 +245,7 @@ class AutoAugment(torch.nn.Module):
class RandAugment(torch.nn.Module):
r"""RandAugment data augmentation method based on
`"RandAugment: Practical automated data augmentation with a reduced search space"
<https://arxiv.org/abs/1909.13719>`.
<https://arxiv.org/abs/1909.13719>`_.
If the image is torch Tensor, it should be of type torch.uint8, and it is expected
to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
If img is PIL Image, it is expected to be in mode "L" or "RGB".
......@@ -293,6 +293,7 @@ class RandAugment(torch.nn.Module):
def forward(self, img: Tensor) -> Tensor:
"""
img (PIL Image or Tensor): Image to be transformed.
Returns:
PIL Image or Tensor: Transformed image.
"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment