Unverified Commit a67cc87a authored by Ponku's avatar Ponku Committed by GitHub
Browse files

Added Middlebury2014 dataset (#6350)

* Added Middlebury2014   dataset

* adressed nits

* mypy fix
parent f36f3514
...@@ -117,6 +117,7 @@ Stereo Matching ...@@ -117,6 +117,7 @@ Stereo Matching
SintelStereo SintelStereo
InStereo2k InStereo2k
ETH3DStereo ETH3DStereo
Middlebury2014Stereo
Image pairs Image pairs
~~~~~~~~~~~ ~~~~~~~~~~~
......
...@@ -3218,5 +3218,98 @@ class ETH3DStereoestCase(datasets_utils.ImageDatasetTestCase): ...@@ -3218,5 +3218,98 @@ class ETH3DStereoestCase(datasets_utils.ImageDatasetTestCase):
pass pass
class Middlebury2014StereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Middlebury2014Stereo
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
split=("train", "additional"),
calibration=("perfect", "imperfect", "both"),
use_ambient_views=(True, False),
)
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))
@staticmethod
def _make_scene_folder(root_dir: str, scene_name: str, split: str) -> None:
calibrations = [None] if split == "test" else ["-perfect", "-imperfect"]
root_dir = pathlib.Path(root_dir)
for c in calibrations:
scene_dir = root_dir / f"{scene_name}{c}"
os.makedirs(scene_dir, exist_ok=True)
# make normal images first
datasets_utils.create_image_file(root=scene_dir, name="im0.png", size=(3, 100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1.png", size=(3, 100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1E.png", size=(3, 100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1L.png", size=(3, 100, 100))
# these are going to end up being gray scale images
datasets_utils.make_fake_pfm_file(h=100, w=100, file_name=scene_dir / "disp0.pfm")
datasets_utils.make_fake_pfm_file(h=100, w=100, file_name=scene_dir / "disp1.pfm")
def inject_fake_data(self, tmpdir, config):
split_scene_map = {
"train": ["Adirondack", "Jadeplant", "Motorcycle", "Piano"],
"additional": ["Backpack", "Bicycle1", "Cable", "Classroom1"],
"test": ["Plants", "Classroom2E", "Classroom2", "Australia"],
}
middlebury_dir = pathlib.Path(tmpdir, "Middlebury2014")
os.makedirs(middlebury_dir, exist_ok=True)
split_dir = middlebury_dir / config["split"]
os.makedirs(split_dir, exist_ok=True)
num_examples = {"train": 2, "additional": 3, "test": 4}.get(config["split"], 0)
for idx in range(num_examples):
scene_name = split_scene_map[config["split"]][idx]
self._make_scene_folder(root_dir=split_dir, scene_name=scene_name, split=config["split"])
if config["calibration"] == "both":
num_examples *= 2
return num_examples
def test_train_splits(self):
for split, calibration in itertools.product(["train", "additional"], ["perfect", "imperfect", "both"]):
with self.create_dataset(split=split, calibration=calibration) as (dataset, _):
for left, right, disparity, mask in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity, mask)
def test_test_split(self):
for split in ["test"]:
with self.create_dataset(split=split, calibration=None) as (dataset, _):
for left, right, disparity, mask in dataset:
datasets_utils.shape_test_for_stereo(left, right)
def test_augmented_view_usage(self):
with self.create_dataset(split="train", use_ambient_views=True) as (dataset, _):
for left, right, disparity, mask in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity, mask)
def test_value_err_train(self):
# train set invalid
split = "train"
calibration = None
with pytest.raises(
ValueError,
match=f"Split '{split}' has calibration settings, however None was provided as an argument."
f"\nSetting calibration to 'perfect' for split '{split}'. Available calibration settings are: 'perfect', 'imperfect', 'both'.",
):
with self.create_dataset(split=split, calibration=calibration):
pass
def test_value_err_test(self):
# test set invalid
split = "test"
calibration = "perfect"
with pytest.raises(
ValueError, match="Split 'test' has only no calibration settings, please set `calibration=None`."
):
with self.create_dataset(split=split, calibration=calibration):
pass
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -7,6 +7,7 @@ from ._stereo_matching import ( ...@@ -7,6 +7,7 @@ from ._stereo_matching import (
InStereo2k, InStereo2k,
Kitti2012Stereo, Kitti2012Stereo,
Kitti2015Stereo, Kitti2015Stereo,
Middlebury2014Stereo,
SceneFlowStereo, SceneFlowStereo,
SintelStereo, SintelStereo,
) )
...@@ -119,6 +120,7 @@ __all__ = ( ...@@ -119,6 +120,7 @@ __all__ = (
"Kitti2012Stereo", "Kitti2012Stereo",
"Kitti2015Stereo", "Kitti2015Stereo",
"CarlaStereo", "CarlaStereo",
"Middlebury2014Stereo",
"CREStereo", "CREStereo",
"FallingThingsStereo", "FallingThingsStereo",
"SceneFlowStereo", "SceneFlowStereo",
......
import functools import functools
import json import json
import os import os
import random
import shutil
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from glob import glob from glob import glob
from pathlib import Path from pathlib import Path
...@@ -9,7 +11,7 @@ from typing import Callable, List, Optional, Tuple, Union ...@@ -9,7 +11,7 @@ from typing import Callable, List, Optional, Tuple, Union
import numpy as np import numpy as np
from PIL import Image from PIL import Image
from .utils import _read_pfm, verify_str_arg from .utils import _read_pfm, download_and_extract_archive, verify_str_arg
from .vision import VisionDataset from .vision import VisionDataset
__all__ = () __all__ = ()
...@@ -50,7 +52,7 @@ class StereoMatchingDataset(ABC, VisionDataset): ...@@ -50,7 +52,7 @@ class StereoMatchingDataset(ABC, VisionDataset):
self._images = [] # type: ignore self._images = [] # type: ignore
self._disparities = [] # type: ignore self._disparities = [] # type: ignore
def _read_img(self, file_path: str) -> Image.Image: def _read_img(self, file_path: Union[str, Path]) -> Image.Image:
img = Image.open(file_path) img = Image.open(file_path)
if img.mode != "RGB": if img.mode != "RGB":
img = img.convert("RGB") img = img.convert("RGB")
...@@ -363,6 +365,263 @@ class Kitti2015Stereo(StereoMatchingDataset): ...@@ -363,6 +365,263 @@ class Kitti2015Stereo(StereoMatchingDataset):
return super().__getitem__(index) return super().__getitem__(index)
class Middlebury2014Stereo(StereoMatchingDataset):
"""Publicly available scenes from the Middlebury dataset `2014 version <https://vision.middlebury.edu/stereo/data/scenes2014/>`.
The dataset mostly follows the original format, without containing the ambient subdirectories. : ::
root
Middlebury2014
train
scene1-{perfect,imperfect}
calib.txt
im{0,1}.png
im1E.png
im1L.png
disp{0,1}.pfm
disp{0,1}-n.png
disp{0,1}-sd.pfm
disp{0,1}y.pfm
scene2-{perfect,imperfect}
calib.txt
im{0,1}.png
im1E.png
im1L.png
disp{0,1}.pfm
disp{0,1}-n.png
disp{0,1}-sd.pfm
disp{0,1}y.pfm
...
additional
scene1-{perfect,imperfect}
calib.txt
im{0,1}.png
im1E.png
im1L.png
disp{0,1}.pfm
disp{0,1}-n.png
disp{0,1}-sd.pfm
disp{0,1}y.pfm
...
test
scene1
calib.txt
im{0,1}.png
scene2
calib.txt
im{0,1}.png
...
Args:
root (string): Root directory of the Middleburry 2014 Dataset.
split (string, optional): The dataset split of scenes, either "train" (default), "test", or "additional"
use_ambient_views (boolean, optional): Whether to use different expose or lightning views when possible.
The dataset samples with equal probability between ``[im1.png, im1E.png, im1L.png]``.
calibration (string, optional): Wether or not to use the calibrated (default) or uncalibrated scenes.
transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
download (boolean, optional): Wether or not to download the dataset in the ``root`` directory.
"""
splits = {
"train": [
"Adirondack",
"Jadeplant",
"Motorcycle",
"Piano",
"Pipes",
"Playroom",
"Playtable",
"Recycle",
"Shelves",
"Vintage",
],
"additional": [
"Backpack",
"Bicycle1",
"Cable",
"Classroom1",
"Couch",
"Flowers",
"Mask",
"Shopvac",
"Sticks",
"Storage",
"Sword1",
"Sword2",
"Umbrella",
],
"test": [
"Plants",
"Classroom2E",
"Classroom2",
"Australia",
"DjembeL",
"CrusadeP",
"Crusade",
"Hoops",
"Bicycle2",
"Staircase",
"Newkuba",
"AustraliaP",
"Djembe",
"Livingroom",
"Computer",
],
}
_has_built_in_disparity_mask = True
def __init__(
self,
root: str,
split: str = "train",
calibration: Optional[str] = "perfect",
use_ambient_views: bool = False,
transforms: Optional[Callable] = None,
download: bool = False,
):
super().__init__(root, transforms)
verify_str_arg(split, "split", valid_values=("train", "test", "additional"))
self.split = split
if calibration:
verify_str_arg(calibration, "calibration", valid_values=("perfect", "imperfect", "both", None)) # type: ignore
if split == "test":
raise ValueError("Split 'test' has only no calibration settings, please set `calibration=None`.")
else:
if split != "test":
raise ValueError(
f"Split '{split}' has calibration settings, however None was provided as an argument."
f"\nSetting calibration to 'perfect' for split '{split}'. Available calibration settings are: 'perfect', 'imperfect', 'both'.",
)
if download:
self._download_dataset(root)
root = Path(root) / "Middlebury2014"
if not os.path.exists(root / split):
raise FileNotFoundError(f"The {split} directory was not found in the provided root directory")
split_scenes = self.splits[split]
# check that the provided root folder contains the scene splits
if not any(
# using startswith to account for perfect / imperfect calibrartion
scene.startswith(s)
for scene in os.listdir(root / split)
for s in split_scenes
):
raise FileNotFoundError(f"Provided root folder does not contain any scenes from the {split} split.")
calibrartion_suffixes = {
None: [""],
"perfect": ["-perfect"],
"imperfect": ["-imperfect"],
"both": ["-perfect", "-imperfect"],
}[calibration]
for calibration_suffix in calibrartion_suffixes:
scene_pattern = "*" + calibration_suffix
left_img_pattern = str(root / split / scene_pattern / "im0.png")
right_img_pattern = str(root / split / scene_pattern / "im1.png")
self._images += self._scan_pairs(left_img_pattern, right_img_pattern)
if split == "test":
self._disparities = list((None, None) for _ in self._images)
else:
left_dispartity_pattern = str(root / split / scene_pattern / "disp0.pfm")
right_dispartity_pattern = str(root / split / scene_pattern / "disp1.pfm")
self._disparities += self._scan_pairs(left_dispartity_pattern, right_dispartity_pattern)
self.use_ambient_views = use_ambient_views
def _read_img(self, file_path: Union[str, Path]) -> Image.Image:
"""
Function that reads either the original right image or an augmented view when ``use_ambient_views`` is True.
When ``use_ambient_views`` is True, the dataset will return at random one of ``[im1.png, im1E.png, im1L.png]``
as the right image.
"""
ambient_file_paths: List[Union[str, Path]] # make mypy happy
if not isinstance(file_path, Path):
file_path = Path(file_path)
if file_path.name == "im1.png" and self.use_ambient_views:
base_path = file_path.parent
# initialize sampleable container
ambient_file_paths = list(base_path / view_name for view_name in ["im1E.png", "im1L.png"])
# double check that we're not going to try to read from an invalid file path
ambient_file_paths = list(filter(lambda p: os.path.exists(p), ambient_file_paths))
# keep the original image as an option as well for uniform sampling between base views
ambient_file_paths.append(file_path)
file_path = random.choice(ambient_file_paths) # type: ignore
return super()._read_img(file_path)
def _read_disparity(self, file_path: str) -> Tuple:
# test split has not disparity maps
if file_path is None:
return None, None
disparity_map = _read_pfm_file(file_path)
disparity_map = np.abs(disparity_map) # ensure that the disparity is positive
disparity_map[disparity_map == np.inf] = 0 # remove infinite disparities
valid_mask = (disparity_map > 0).squeeze(0) # mask out invalid disparities
return disparity_map, valid_mask
def _download_dataset(self, root: str):
base_url = "https://vision.middlebury.edu/stereo/data/scenes2014/zip"
# train and additional splits have 2 different calibration settings
root = Path(root) / "Middlebury2014"
split_name = self.split
if split_name != "test":
for split_scene in self.splits[split_name]:
split_root = root / split_name
for calibration in ["perfect", "imperfect"]:
scene_name = f"{split_scene}-{calibration}"
scene_url = f"{base_url}/{scene_name}.zip"
print(f"Downloading {scene_url}")
# download the scene only if it doesn't exist
if not (split_root / scene_name).exists():
download_and_extract_archive(
url=scene_url,
filename=f"{scene_name}.zip",
download_root=str(split_root),
remove_finished=True,
)
else:
os.makedirs(root / "test")
if any(s not in os.listdir(root / "test") for s in self.splits["test"]):
# test split is downloaded from a different location
test_set_url = "https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-data-F.zip"
# the unzip is going to produce a directory MiddEval3 with two subdirectories trainingF and testF
# we want to move the contents from testF into the directory
download_and_extract_archive(url=test_set_url, download_root=str(root), remove_finished=True)
for scene_dir, scene_names, _ in os.walk(str(root / "MiddEval3/testF")):
for scene in scene_names:
scene_dst_dir = root / "test"
scene_src_dir = Path(scene_dir) / scene
os.makedirs(scene_dst_dir, exist_ok=True)
shutil.move(str(scene_src_dir), str(scene_dst_dir))
# cleanup MiddEval3 directory
shutil.rmtree(str(root / "MiddEval3"))
def __getitem__(self, index: int) -> Tuple:
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
``valid_mask`` is implicitly ``None`` for `split=test`.
"""
return super().__getitem__(index)
class CREStereo(StereoMatchingDataset): class CREStereo(StereoMatchingDataset):
"""Synthetic dataset used in training the `CREStereo <https://arxiv.org/pdf/2203.11483.pdf>`_ architecture. """Synthetic dataset used in training the `CREStereo <https://arxiv.org/pdf/2203.11483.pdf>`_ architecture.
Dataset details on the official paper `repo <https://github.com/megvii-research/CREStereo>`_. Dataset details on the official paper `repo <https://github.com/megvii-research/CREStereo>`_.
...@@ -432,7 +691,7 @@ class CREStereo(StereoMatchingDataset): ...@@ -432,7 +691,7 @@ class CREStereo(StereoMatchingDataset):
def _read_disparity(self, file_path: str) -> Tuple: def _read_disparity(self, file_path: str) -> Tuple:
disparity_map = np.asarray(Image.open(file_path), dtype=np.float32) disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
# unsqueeze the disparity map into (C, H, W) format # unsqueeze the disparity map into (C, H, W) format
disparity_map = disparity_map[None, :, :] / 256.0 disparity_map = disparity_map[None, :, :] / 32.0
valid_mask = None valid_mask = None
return disparity_map, valid_mask return disparity_map, valid_mask
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment