Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
a23778c0
Unverified
Commit
a23778c0
authored
Nov 06, 2021
by
Vasilis Vryniotis
Committed by
GitHub
Nov 06, 2021
Browse files
Adding interpolation in meta for all models and cleaning up unnecessary vars. (#4876)
parent
ec6f12d1
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
36 additions
and
12 deletions
+36
-12
torchvision/prototype/models/detection/faster_rcnn.py
torchvision/prototype/models/detection/faster_rcnn.py
+6
-1
torchvision/prototype/models/detection/mask_rcnn.py
torchvision/prototype/models/detection/mask_rcnn.py
+3
-0
torchvision/prototype/models/detection/retinanet.py
torchvision/prototype/models/detection/retinanet.py
+3
-0
torchvision/prototype/models/segmentation/deeplabv3.py
torchvision/prototype/models/segmentation/deeplabv3.py
+6
-1
torchvision/prototype/models/segmentation/fcn.py
torchvision/prototype/models/segmentation/fcn.py
+6
-1
torchvision/prototype/models/segmentation/lraspp.py
torchvision/prototype/models/segmentation/lraspp.py
+3
-0
torchvision/prototype/models/vgg.py
torchvision/prototype/models/vgg.py
+9
-9
No files found.
torchvision/prototype/models/detection/faster_rcnn.py
View file @
a23778c0
import
warnings
import
warnings
from
typing
import
Any
,
Optional
,
Union
from
typing
import
Any
,
Optional
,
Union
from
torchvision.transforms.functional
import
InterpolationMode
from
....models.detection.faster_rcnn
import
(
from
....models.detection.faster_rcnn
import
(
_mobilenet_extractor
,
_mobilenet_extractor
,
_resnet_fpn_extractor
,
_resnet_fpn_extractor
,
...
@@ -28,7 +30,10 @@ __all__ = [
...
@@ -28,7 +30,10 @@ __all__ = [
]
]
_common_meta
=
{
"categories"
:
_COCO_CATEGORIES
}
_common_meta
=
{
"categories"
:
_COCO_CATEGORIES
,
"interpolation"
:
InterpolationMode
.
BILINEAR
,
}
class
FasterRCNNResNet50FPNWeights
(
Weights
):
class
FasterRCNNResNet50FPNWeights
(
Weights
):
...
...
torchvision/prototype/models/detection/mask_rcnn.py
View file @
a23778c0
import
warnings
import
warnings
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torchvision.transforms.functional
import
InterpolationMode
from
....models.detection.mask_rcnn
import
(
from
....models.detection.mask_rcnn
import
(
_resnet_fpn_extractor
,
_resnet_fpn_extractor
,
_validate_trainable_layers
,
_validate_trainable_layers
,
...
@@ -27,6 +29,7 @@ class MaskRCNNResNet50FPNWeights(Weights):
...
@@ -27,6 +29,7 @@ class MaskRCNNResNet50FPNWeights(Weights):
transforms
=
CocoEval
,
transforms
=
CocoEval
,
meta
=
{
meta
=
{
"categories"
:
_COCO_CATEGORIES
,
"categories"
:
_COCO_CATEGORIES
,
"interpolation"
:
InterpolationMode
.
BILINEAR
,
"recipe"
:
"https://github.com/pytorch/vision/tree/main/references/detection#mask-r-cnn"
,
"recipe"
:
"https://github.com/pytorch/vision/tree/main/references/detection#mask-r-cnn"
,
"box_map"
:
37.9
,
"box_map"
:
37.9
,
"mask_map"
:
34.6
,
"mask_map"
:
34.6
,
...
...
torchvision/prototype/models/detection/retinanet.py
View file @
a23778c0
import
warnings
import
warnings
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torchvision.transforms.functional
import
InterpolationMode
from
....models.detection.retinanet
import
(
from
....models.detection.retinanet
import
(
_resnet_fpn_extractor
,
_resnet_fpn_extractor
,
_validate_trainable_layers
,
_validate_trainable_layers
,
...
@@ -28,6 +30,7 @@ class RetinaNetResNet50FPNWeights(Weights):
...
@@ -28,6 +30,7 @@ class RetinaNetResNet50FPNWeights(Weights):
transforms
=
CocoEval
,
transforms
=
CocoEval
,
meta
=
{
meta
=
{
"categories"
:
_COCO_CATEGORIES
,
"categories"
:
_COCO_CATEGORIES
,
"interpolation"
:
InterpolationMode
.
BILINEAR
,
"recipe"
:
"https://github.com/pytorch/vision/tree/main/references/detection#retinanet"
,
"recipe"
:
"https://github.com/pytorch/vision/tree/main/references/detection#retinanet"
,
"map"
:
36.4
,
"map"
:
36.4
,
},
},
...
...
torchvision/prototype/models/segmentation/deeplabv3.py
View file @
a23778c0
...
@@ -2,6 +2,8 @@ import warnings
...
@@ -2,6 +2,8 @@ import warnings
from
functools
import
partial
from
functools
import
partial
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torchvision.transforms.functional
import
InterpolationMode
from
....models.segmentation.deeplabv3
import
DeepLabV3
,
_deeplabv3_mobilenetv3
,
_deeplabv3_resnet
from
....models.segmentation.deeplabv3
import
DeepLabV3
,
_deeplabv3_mobilenetv3
,
_deeplabv3_resnet
from
...transforms.presets
import
VocEval
from
...transforms.presets
import
VocEval
from
.._api
import
Weights
,
WeightEntry
from
.._api
import
Weights
,
WeightEntry
...
@@ -22,7 +24,10 @@ __all__ = [
...
@@ -22,7 +24,10 @@ __all__ = [
]
]
_common_meta
=
{
"categories"
:
_VOC_CATEGORIES
}
_common_meta
=
{
"categories"
:
_VOC_CATEGORIES
,
"interpolation"
:
InterpolationMode
.
BILINEAR
,
}
class
DeepLabV3ResNet50Weights
(
Weights
):
class
DeepLabV3ResNet50Weights
(
Weights
):
...
...
torchvision/prototype/models/segmentation/fcn.py
View file @
a23778c0
...
@@ -2,6 +2,8 @@ import warnings
...
@@ -2,6 +2,8 @@ import warnings
from
functools
import
partial
from
functools
import
partial
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torchvision.transforms.functional
import
InterpolationMode
from
....models.segmentation.fcn
import
FCN
,
_fcn_resnet
from
....models.segmentation.fcn
import
FCN
,
_fcn_resnet
from
...transforms.presets
import
VocEval
from
...transforms.presets
import
VocEval
from
.._api
import
Weights
,
WeightEntry
from
.._api
import
Weights
,
WeightEntry
...
@@ -12,7 +14,10 @@ from ..resnet import ResNet50Weights, ResNet101Weights, resnet50, resnet101
...
@@ -12,7 +14,10 @@ from ..resnet import ResNet50Weights, ResNet101Weights, resnet50, resnet101
__all__
=
[
"FCN"
,
"FCNResNet50Weights"
,
"FCNResNet101Weights"
,
"fcn_resnet50"
,
"fcn_resnet101"
]
__all__
=
[
"FCN"
,
"FCNResNet50Weights"
,
"FCNResNet101Weights"
,
"fcn_resnet50"
,
"fcn_resnet101"
]
_common_meta
=
{
"categories"
:
_VOC_CATEGORIES
}
_common_meta
=
{
"categories"
:
_VOC_CATEGORIES
,
"interpolation"
:
InterpolationMode
.
BILINEAR
,
}
class
FCNResNet50Weights
(
Weights
):
class
FCNResNet50Weights
(
Weights
):
...
...
torchvision/prototype/models/segmentation/lraspp.py
View file @
a23778c0
...
@@ -2,6 +2,8 @@ import warnings
...
@@ -2,6 +2,8 @@ import warnings
from
functools
import
partial
from
functools
import
partial
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torchvision.transforms.functional
import
InterpolationMode
from
....models.segmentation.lraspp
import
LRASPP
,
_lraspp_mobilenetv3
from
....models.segmentation.lraspp
import
LRASPP
,
_lraspp_mobilenetv3
from
...transforms.presets
import
VocEval
from
...transforms.presets
import
VocEval
from
.._api
import
Weights
,
WeightEntry
from
.._api
import
Weights
,
WeightEntry
...
@@ -18,6 +20,7 @@ class LRASPPMobileNetV3LargeWeights(Weights):
...
@@ -18,6 +20,7 @@ class LRASPPMobileNetV3LargeWeights(Weights):
transforms
=
partial
(
VocEval
,
resize_size
=
520
),
transforms
=
partial
(
VocEval
,
resize_size
=
520
),
meta
=
{
meta
=
{
"categories"
:
_VOC_CATEGORIES
,
"categories"
:
_VOC_CATEGORIES
,
"interpolation"
:
InterpolationMode
.
BILINEAR
,
"recipe"
:
"https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large"
,
"recipe"
:
"https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large"
,
"mIoU"
:
57.9
,
"mIoU"
:
57.9
,
"acc"
:
91.2
,
"acc"
:
91.2
,
...
...
torchvision/prototype/models/vgg.py
View file @
a23778c0
...
@@ -31,7 +31,7 @@ __all__ = [
...
@@ -31,7 +31,7 @@ __all__ = [
]
]
def
_vgg
(
arch
:
str
,
cfg
:
str
,
batch_norm
:
bool
,
weights
:
Optional
[
Weights
],
progress
:
bool
,
**
kwargs
:
Any
)
->
VGG
:
def
_vgg
(
cfg
:
str
,
batch_norm
:
bool
,
weights
:
Optional
[
Weights
],
progress
:
bool
,
**
kwargs
:
Any
)
->
VGG
:
if
weights
is
not
None
:
if
weights
is
not
None
:
kwargs
[
"num_classes"
]
=
len
(
weights
.
meta
[
"categories"
])
kwargs
[
"num_classes"
]
=
len
(
weights
.
meta
[
"categories"
])
model
=
VGG
(
make_layers
(
cfgs
[
cfg
],
batch_norm
=
batch_norm
),
**
kwargs
)
model
=
VGG
(
make_layers
(
cfgs
[
cfg
],
batch_norm
=
batch_norm
),
**
kwargs
)
...
@@ -150,7 +150,7 @@ def vgg11(weights: Optional[VGG11Weights] = None, progress: bool = True, **kwarg
...
@@ -150,7 +150,7 @@ def vgg11(weights: Optional[VGG11Weights] = None, progress: bool = True, **kwarg
weights
=
VGG11Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG11Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG11Weights
.
verify
(
weights
)
weights
=
VGG11Weights
.
verify
(
weights
)
return
_vgg
(
"vgg11"
,
"A"
,
False
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"A"
,
False
,
weights
,
progress
,
**
kwargs
)
def
vgg11_bn
(
weights
:
Optional
[
VGG11BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
def
vgg11_bn
(
weights
:
Optional
[
VGG11BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
...
@@ -159,7 +159,7 @@ def vgg11_bn(weights: Optional[VGG11BNWeights] = None, progress: bool = True, **
...
@@ -159,7 +159,7 @@ def vgg11_bn(weights: Optional[VGG11BNWeights] = None, progress: bool = True, **
weights
=
VGG11BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG11BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG11BNWeights
.
verify
(
weights
)
weights
=
VGG11BNWeights
.
verify
(
weights
)
return
_vgg
(
"vgg11_bn"
,
"A"
,
True
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"A"
,
True
,
weights
,
progress
,
**
kwargs
)
def
vgg13
(
weights
:
Optional
[
VGG13Weights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
def
vgg13
(
weights
:
Optional
[
VGG13Weights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
...
@@ -168,7 +168,7 @@ def vgg13(weights: Optional[VGG13Weights] = None, progress: bool = True, **kwarg
...
@@ -168,7 +168,7 @@ def vgg13(weights: Optional[VGG13Weights] = None, progress: bool = True, **kwarg
weights
=
VGG13Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG13Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG13Weights
.
verify
(
weights
)
weights
=
VGG13Weights
.
verify
(
weights
)
return
_vgg
(
"vgg13"
,
"B"
,
False
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"B"
,
False
,
weights
,
progress
,
**
kwargs
)
def
vgg13_bn
(
weights
:
Optional
[
VGG13BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
def
vgg13_bn
(
weights
:
Optional
[
VGG13BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
...
@@ -177,7 +177,7 @@ def vgg13_bn(weights: Optional[VGG13BNWeights] = None, progress: bool = True, **
...
@@ -177,7 +177,7 @@ def vgg13_bn(weights: Optional[VGG13BNWeights] = None, progress: bool = True, **
weights
=
VGG13BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG13BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG13BNWeights
.
verify
(
weights
)
weights
=
VGG13BNWeights
.
verify
(
weights
)
return
_vgg
(
"vgg13_bn"
,
"B"
,
True
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"B"
,
True
,
weights
,
progress
,
**
kwargs
)
def
vgg16
(
weights
:
Optional
[
VGG16Weights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
def
vgg16
(
weights
:
Optional
[
VGG16Weights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
...
@@ -186,7 +186,7 @@ def vgg16(weights: Optional[VGG16Weights] = None, progress: bool = True, **kwarg
...
@@ -186,7 +186,7 @@ def vgg16(weights: Optional[VGG16Weights] = None, progress: bool = True, **kwarg
weights
=
VGG16Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG16Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG16Weights
.
verify
(
weights
)
weights
=
VGG16Weights
.
verify
(
weights
)
return
_vgg
(
"vgg16"
,
"D"
,
False
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"D"
,
False
,
weights
,
progress
,
**
kwargs
)
def
vgg16_bn
(
weights
:
Optional
[
VGG16BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
def
vgg16_bn
(
weights
:
Optional
[
VGG16BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
...
@@ -195,7 +195,7 @@ def vgg16_bn(weights: Optional[VGG16BNWeights] = None, progress: bool = True, **
...
@@ -195,7 +195,7 @@ def vgg16_bn(weights: Optional[VGG16BNWeights] = None, progress: bool = True, **
weights
=
VGG16BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG16BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG16BNWeights
.
verify
(
weights
)
weights
=
VGG16BNWeights
.
verify
(
weights
)
return
_vgg
(
"vgg16_bn"
,
"D"
,
True
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"D"
,
True
,
weights
,
progress
,
**
kwargs
)
def
vgg19
(
weights
:
Optional
[
VGG19Weights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
def
vgg19
(
weights
:
Optional
[
VGG19Weights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
...
@@ -204,7 +204,7 @@ def vgg19(weights: Optional[VGG19Weights] = None, progress: bool = True, **kwarg
...
@@ -204,7 +204,7 @@ def vgg19(weights: Optional[VGG19Weights] = None, progress: bool = True, **kwarg
weights
=
VGG19Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG19Weights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG19Weights
.
verify
(
weights
)
weights
=
VGG19Weights
.
verify
(
weights
)
return
_vgg
(
"vgg19"
,
"E"
,
False
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"E"
,
False
,
weights
,
progress
,
**
kwargs
)
def
vgg19_bn
(
weights
:
Optional
[
VGG19BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
def
vgg19_bn
(
weights
:
Optional
[
VGG19BNWeights
]
=
None
,
progress
:
bool
=
True
,
**
kwargs
:
Any
)
->
VGG
:
...
@@ -213,4 +213,4 @@ def vgg19_bn(weights: Optional[VGG19BNWeights] = None, progress: bool = True, **
...
@@ -213,4 +213,4 @@ def vgg19_bn(weights: Optional[VGG19BNWeights] = None, progress: bool = True, **
weights
=
VGG19BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG19BNWeights
.
ImageNet1K_RefV1
if
kwargs
.
pop
(
"pretrained"
)
else
None
weights
=
VGG19BNWeights
.
verify
(
weights
)
weights
=
VGG19BNWeights
.
verify
(
weights
)
return
_vgg
(
"vgg19_bn"
,
"E"
,
True
,
weights
,
progress
,
**
kwargs
)
return
_vgg
(
"E"
,
True
,
weights
,
progress
,
**
kwargs
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment