Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
9948d4f3
Unverified
Commit
9948d4f3
authored
Oct 08, 2021
by
Philip Meier
Committed by
GitHub
Oct 08, 2021
Browse files
add prototype for COCO dataset (#4564)
Co-authored-by:
Prabhat Roy
<
prabhatroy@fb.com
>
parent
aaee8ff1
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
152 additions
and
0 deletions
+152
-0
torchvision/prototype/datasets/_builtin/__init__.py
torchvision/prototype/datasets/_builtin/__init__.py
+1
-0
torchvision/prototype/datasets/_builtin/coco.py
torchvision/prototype/datasets/_builtin/coco.py
+151
-0
No files found.
torchvision/prototype/datasets/_builtin/__init__.py
View file @
9948d4f3
from
.caltech
import
Caltech101
,
Caltech256
from
.celeba
import
CelebA
from
.cifar
import
Cifar10
,
Cifar100
from
.coco
import
Coco
from
.mnist
import
MNIST
,
FashionMNIST
,
KMNIST
,
EMNIST
,
QMNIST
from
.sbd
import
SBD
from
.voc
import
VOC
torchvision/prototype/datasets/_builtin/coco.py
0 → 100644
View file @
9948d4f3
import
io
import
pathlib
from
typing
import
Any
,
Callable
,
Dict
,
List
,
Optional
,
Tuple
import
torch
from
torchdata.datapipes.iter
import
(
IterDataPipe
,
Mapper
,
Shuffler
,
Filter
,
Demultiplexer
,
ZipArchiveReader
,
Grouper
,
KeyZipper
,
JsonParser
,
UnBatcher
,
)
from
torchvision.prototype.datasets.utils
import
(
Dataset
,
DatasetConfig
,
DatasetInfo
,
HttpResource
,
OnlineResource
,
DatasetType
,
)
from
torchvision.prototype.datasets.utils._internal
import
(
MappingIterator
,
INFINITE_BUFFER_SIZE
,
getitem
,
path_accessor
,
path_comparator
,
)
HERE
=
pathlib
.
Path
(
__file__
).
parent
class
Coco
(
Dataset
):
@
property
def
info
(
self
)
->
DatasetInfo
:
return
DatasetInfo
(
"coco"
,
type
=
DatasetType
.
IMAGE
,
homepage
=
"https://cocodataset.org/"
,
valid_options
=
dict
(
split
=
(
"train"
,),
year
=
(
"2014"
,),
),
)
def
resources
(
self
,
config
:
DatasetConfig
)
->
List
[
OnlineResource
]:
if
config
.
year
==
"2014"
:
if
config
.
split
in
(
"train"
,
"val"
):
if
config
.
split
==
"train"
:
images
=
HttpResource
(
"http://images.cocodataset.org/zips/train2014.zip"
,
sha256
=
"ede4087e640bddba550e090eae701092534b554b42b05ac33f0300b984b31775"
,
)
else
:
raise
RuntimeError
(
"FIXME"
)
meta
=
HttpResource
(
"http://images.cocodataset.org/annotations/annotations_trainval2014.zip"
,
sha256
=
"031296bbc80c45a1d1f76bf9a90ead27e94e99ec629208449507a4917a3bf009"
,
)
else
:
raise
RuntimeError
(
"FIXME"
)
else
:
raise
RuntimeError
(
"FIXME"
)
return
[
images
,
meta
]
def
_classify_meta
(
self
,
data
:
Tuple
[
str
,
Any
])
->
Optional
[
int
]:
key
,
_
=
data
if
key
==
"images"
:
return
0
elif
key
==
"annotations"
:
return
1
else
:
return
None
def
_decode_ann
(
self
,
ann
:
Dict
[
str
,
Any
])
->
Dict
[
str
,
Any
]:
area
=
torch
.
tensor
(
ann
[
"area"
])
iscrowd
=
bool
(
ann
[
"iscrowd"
])
bbox
=
torch
.
tensor
(
ann
[
"bbox"
])
id
=
ann
[
"id"
]
return
dict
(
area
=
area
,
iscrowd
=
iscrowd
,
bbox
=
bbox
,
id
=
id
)
def
_collate_and_decode_sample
(
self
,
data
:
Tuple
[
Tuple
[
List
[
Dict
[
str
,
Any
]],
Dict
[
str
,
Any
]],
Tuple
[
str
,
io
.
IOBase
]],
*
,
decoder
:
Optional
[
Callable
[[
io
.
IOBase
],
torch
.
Tensor
]],
)
->
Dict
[
str
,
Any
]:
ann_data
,
image_data
=
data
anns
,
image_meta
=
ann_data
path
,
buffer
=
image_data
anns
=
[
self
.
_decode_ann
(
ann
)
for
ann
in
anns
]
image
=
decoder
(
buffer
)
if
decoder
else
buffer
return
dict
(
anns
=
anns
,
id
=
image_meta
[
"id"
],
path
=
path
,
image
=
image
)
def
_make_datapipe
(
self
,
resource_dps
:
List
[
IterDataPipe
],
*
,
config
:
DatasetConfig
,
decoder
:
Optional
[
Callable
[[
io
.
IOBase
],
torch
.
Tensor
]],
)
->
IterDataPipe
[
Dict
[
str
,
Any
]]:
images_dp
,
meta_dp
=
resource_dps
meta_dp
=
ZipArchiveReader
(
meta_dp
)
meta_dp
=
Filter
(
meta_dp
,
path_comparator
(
"name"
,
f
"instances_
{
config
.
split
}{
config
.
year
}
.json"
))
meta_dp
=
JsonParser
(
meta_dp
)
meta_dp
=
Mapper
(
meta_dp
,
getitem
(
1
))
meta_dp
=
MappingIterator
(
meta_dp
)
images_meta_dp
,
anns_meta_dp
=
Demultiplexer
(
meta_dp
,
2
,
self
.
_classify_meta
,
drop_none
=
True
,
buffer_size
=
INFINITE_BUFFER_SIZE
,
)
images_meta_dp
=
Mapper
(
images_meta_dp
,
getitem
(
1
))
images_meta_dp
=
UnBatcher
(
images_meta_dp
)
anns_meta_dp
=
Mapper
(
anns_meta_dp
,
getitem
(
1
))
anns_meta_dp
=
UnBatcher
(
anns_meta_dp
)
anns_dp
=
Grouper
(
anns_meta_dp
,
group_key_fn
=
getitem
(
"image_id"
),
buffer_size
=
INFINITE_BUFFER_SIZE
)
# drop images without annotations
anns_dp
=
Filter
(
anns_dp
,
bool
)
anns_dp
=
Shuffler
(
anns_dp
,
buffer_size
=
INFINITE_BUFFER_SIZE
)
anns_dp
=
KeyZipper
(
anns_dp
,
images_meta_dp
,
key_fn
=
getitem
(
0
,
"image_id"
),
ref_key_fn
=
getitem
(
"id"
),
buffer_size
=
INFINITE_BUFFER_SIZE
,
)
images_dp
=
ZipArchiveReader
(
images_dp
)
dp
=
KeyZipper
(
anns_dp
,
images_dp
,
key_fn
=
getitem
(
1
,
"file_name"
),
ref_key_fn
=
path_accessor
(
"name"
),
buffer_size
=
INFINITE_BUFFER_SIZE
,
)
return
Mapper
(
dp
,
self
.
_collate_and_decode_sample
,
fn_kwargs
=
dict
(
decoder
=
decoder
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment