Unverified Commit 8fe439e6 authored by Aditya Oke's avatar Aditya Oke Committed by GitHub
Browse files

[DOC] Adds Documentation for AutoAugmentation (#3529)

* add _all for autoaugment

* adds docs

* add docs, test locally

* refactored as per code review
parent 797fd26f
......@@ -57,6 +57,7 @@ Compositions of transforms
.. autoclass:: Compose
Transforms on PIL Image and torch.\*Tensor
------------------------------------------
......@@ -156,6 +157,22 @@ Generic Transforms
:members:
AutoAugment Transforms
----------------------
`AutoAugment <https://arxiv.org/pdf/1805.09501.pdf>`_ is a common Data Augmentation technique that can improve the accuracy of Image Classification models.
Though the data augmentation policies are directly linked to their trained dataset, empirical studies show that
ImageNet policies provide significant improvements when applied to other datasets.
In TorchVision we implemented 3 policies learned on the following datasets: ImageNet, CIFAR10 and SVHN.
The new transform can be used standalone or mixed-and-matched with existing transforms:
.. autoclass:: AutoAugmentPolicy
:members:
.. autoclass:: AutoAugment
:members:
Functional Transforms
---------------------
......
......@@ -7,9 +7,12 @@ from typing import List, Tuple, Optional
from . import functional as F, InterpolationMode
__all__ = ["AutoAugmentPolicy", "AutoAugment"]
class AutoAugmentPolicy(Enum):
"""AutoAugment policies learned on different datasets.
Available policies are IMAGENET, CIFAR10 and SVHN.
"""
IMAGENET = "imagenet"
CIFAR10 = "cifar10"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment