Commit 8bdbca74 authored by Tian Qi Chen's avatar Tian Qi Chen Committed by Adam Paszke
Browse files

add mnist

parent 13a0493b
...@@ -2,8 +2,10 @@ from .lsun import LSUN, LSUNClass ...@@ -2,8 +2,10 @@ from .lsun import LSUN, LSUNClass
from .folder import ImageFolder from .folder import ImageFolder
from .coco import CocoCaptions, CocoDetection from .coco import CocoCaptions, CocoDetection
from .cifar import CIFAR10, CIFAR100 from .cifar import CIFAR10, CIFAR100
from .mnist import MNIST
__all__ = ('LSUN', 'LSUNClass', __all__ = ('LSUN', 'LSUNClass',
'ImageFolder', 'ImageFolder',
'CocoCaptions', 'CocoDetection', 'CocoCaptions', 'CocoDetection',
'CIFAR10', 'CIFAR100') 'CIFAR10', 'CIFAR100',
'MNIST')
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import torch
import json
import codecs
import numpy as np
class MNIST(data.Dataset):
urls = [
'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
]
raw_folder = 'raw'
processed_folder = 'processed'
training_file = 'training.pt'
test_file = 'test.pt'
def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found.'
+ ' You can use download=True to download it')
if self.train:
self.train_data, self.train_labels = torch.load(os.path.join(root, self.processed_folder, self.training_file))
else:
self.test_data, self.test_labels = torch.load(os.path.join(root, self.processed_folder, self.test_file))
def __getitem__(self, index):
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode='L')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
if self.train:
return 60000
else:
return 10000
def _check_exists(self):
return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \
os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))
def download(self):
from six.moves import urllib
import gzip
if self._check_exists():
print('Files already downloaded')
return
# download files
try:
os.makedirs(os.path.join(self.root, self.raw_folder))
os.makedirs(os.path.join(self.root, self.processed_folder))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
for url in self.urls:
print('Downloading ' + url)
data = urllib.request.urlopen(url)
filename = url.rpartition('/')[2]
file_path = os.path.join(self.root, self.raw_folder, filename)
with open(file_path, 'wb') as f:
f.write(data.read())
with open(file_path.replace('.gz', ''), 'wb') as out_f, \
gzip.GzipFile(file_path) as zip_f:
out_f.write(zip_f.read())
os.unlink(file_path)
# process and save as torch files
print('Processing')
training_set = (
read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),
read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte'))
)
test_set = (
read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),
read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte'))
)
with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
torch.save(training_set, f)
with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
torch.save(test_set, f)
print('Done!')
def get_int(b):
return int(codecs.encode(b, 'hex'), 16)
def parse_byte(b):
if isinstance(b, str):
return ord(b)
return b
def read_label_file(path):
with open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2049
length = get_int(data[4:8])
labels = [parse_byte(b) for b in data[8:]]
assert len(labels) == length
return torch.LongTensor(labels)
def read_image_file(path):
with open(path, 'rb') as f:
data = f.read()
assert get_int(data[:4]) == 2051
length = get_int(data[4:8])
num_rows = get_int(data[8:12])
num_cols = get_int(data[12:16])
images = []
idx = 16
for l in range(length):
img = []
images.append(img)
for r in range(num_rows):
row = []
img.append(row)
for c in range(num_cols):
row.append(parse_byte(data[idx]))
idx += 1
assert len(images) == length
return torch.ByteTensor(images).view(-1, 28, 28)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment