Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
8878068e
Commit
8878068e
authored
Aug 28, 2019
by
eellison
Committed by
Francisco Massa
Aug 28, 2019
Browse files
Test that torchhub models are scriptable (#1242)
* test that torchhub models are scriptable * fix lint
parent
4f8b8ff1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
31 additions
and
0 deletions
+31
-0
test/test_models.py
test/test_models.py
+31
-0
No files found.
test/test_models.py
View file @
8878068e
...
@@ -25,11 +25,39 @@ def get_available_video_models():
...
@@ -25,11 +25,39 @@ def get_available_video_models():
return
[
k
for
k
,
v
in
models
.
video
.
__dict__
.
items
()
if
callable
(
v
)
and
k
[
0
].
lower
()
==
k
[
0
]
and
k
[
0
]
!=
"_"
]
return
[
k
for
k
,
v
in
models
.
video
.
__dict__
.
items
()
if
callable
(
v
)
and
k
[
0
].
lower
()
==
k
[
0
]
and
k
[
0
]
!=
"_"
]
# model_name, expected to script without error
torchub_models
=
{
"deeplabv3_resnet101"
:
False
,
"mobilenet_v2"
:
True
,
"resnext50_32x4d"
:
False
,
"fcn_resnet101"
:
False
,
"googlenet"
:
False
,
"densenet121"
:
False
,
"resnet18"
:
False
,
"alexnet"
:
True
,
"shufflenet_v2_x1_0"
:
False
,
"squeezenet1_0"
:
True
,
"vgg11"
:
True
,
"inception_v3"
:
False
,
}
class
Tester
(
unittest
.
TestCase
):
class
Tester
(
unittest
.
TestCase
):
def
check_script
(
self
,
model
,
name
):
if
name
not
in
torchub_models
:
return
scriptable
=
True
try
:
torch
.
jit
.
script
(
model
)
except
Exception
:
scriptable
=
False
self
.
assertEqual
(
torchub_models
[
name
],
scriptable
)
def
_test_classification_model
(
self
,
name
,
input_shape
):
def
_test_classification_model
(
self
,
name
,
input_shape
):
# passing num_class equal to a number other than 1000 helps in making the test
# passing num_class equal to a number other than 1000 helps in making the test
# more enforcing in nature
# more enforcing in nature
model
=
models
.
__dict__
[
name
](
num_classes
=
50
)
model
=
models
.
__dict__
[
name
](
num_classes
=
50
)
self
.
check_script
(
model
,
name
)
model
.
eval
()
model
.
eval
()
x
=
torch
.
rand
(
input_shape
)
x
=
torch
.
rand
(
input_shape
)
out
=
model
(
x
)
out
=
model
(
x
)
...
@@ -39,6 +67,7 @@ class Tester(unittest.TestCase):
...
@@ -39,6 +67,7 @@ class Tester(unittest.TestCase):
# passing num_class equal to a number other than 1000 helps in making the test
# passing num_class equal to a number other than 1000 helps in making the test
# more enforcing in nature
# more enforcing in nature
model
=
models
.
segmentation
.
__dict__
[
name
](
num_classes
=
50
,
pretrained_backbone
=
False
)
model
=
models
.
segmentation
.
__dict__
[
name
](
num_classes
=
50
,
pretrained_backbone
=
False
)
self
.
check_script
(
model
,
name
)
model
.
eval
()
model
.
eval
()
input_shape
=
(
1
,
3
,
300
,
300
)
input_shape
=
(
1
,
3
,
300
,
300
)
x
=
torch
.
rand
(
input_shape
)
x
=
torch
.
rand
(
input_shape
)
...
@@ -47,6 +76,7 @@ class Tester(unittest.TestCase):
...
@@ -47,6 +76,7 @@ class Tester(unittest.TestCase):
def
_test_detection_model
(
self
,
name
):
def
_test_detection_model
(
self
,
name
):
model
=
models
.
detection
.
__dict__
[
name
](
num_classes
=
50
,
pretrained_backbone
=
False
)
model
=
models
.
detection
.
__dict__
[
name
](
num_classes
=
50
,
pretrained_backbone
=
False
)
self
.
check_script
(
model
,
name
)
model
.
eval
()
model
.
eval
()
input_shape
=
(
3
,
300
,
300
)
input_shape
=
(
3
,
300
,
300
)
x
=
torch
.
rand
(
input_shape
)
x
=
torch
.
rand
(
input_shape
)
...
@@ -64,6 +94,7 @@ class Tester(unittest.TestCase):
...
@@ -64,6 +94,7 @@ class Tester(unittest.TestCase):
input_shape
=
(
1
,
3
,
4
,
112
,
112
)
input_shape
=
(
1
,
3
,
4
,
112
,
112
)
# test both basicblock and Bottleneck
# test both basicblock and Bottleneck
model
=
models
.
video
.
__dict__
[
name
](
num_classes
=
50
)
model
=
models
.
video
.
__dict__
[
name
](
num_classes
=
50
)
self
.
check_script
(
model
,
name
)
x
=
torch
.
rand
(
input_shape
)
x
=
torch
.
rand
(
input_shape
)
out
=
model
(
x
)
out
=
model
(
x
)
self
.
assertEqual
(
out
.
shape
[
-
1
],
50
)
self
.
assertEqual
(
out
.
shape
[
-
1
],
50
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment