Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
70745705
Unverified
Commit
70745705
authored
Feb 13, 2023
by
Philip Meier
Committed by
GitHub
Feb 13, 2023
Browse files
call dataset wrapper with idx and sample (#7235)
parent
b030e936
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
20 additions
and
14 deletions
+20
-14
torchvision/prototype/datapoints/_dataset_wrapper.py
torchvision/prototype/datapoints/_dataset_wrapper.py
+20
-14
No files found.
torchvision/prototype/datapoints/_dataset_wrapper.py
View file @
70745705
...
...
@@ -74,7 +74,7 @@ class VisionDatasetDatapointWrapper(Dataset):
# of this class
sample
=
self
.
_dataset
[
idx
]
sample
=
self
.
_wrapper
(
sample
)
sample
=
self
.
_wrapper
(
idx
,
sample
)
# Regardless of whether the user has supplied the transforms individually (`transform` and `target_transform`)
# or joint (`transforms`), we can access the full functionality through `transforms`
...
...
@@ -125,7 +125,10 @@ def wrap_target_by_type(target, *, target_types, type_wrappers):
def
classification_wrapper_factory
(
dataset
):
return
identity
def
wrapper
(
idx
,
sample
):
return
sample
return
wrapper
for
dataset_cls
in
[
...
...
@@ -143,7 +146,7 @@ for dataset_cls in [
def
segmentation_wrapper_factory
(
dataset
):
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image
,
mask
=
sample
return
image
,
pil_image_to_mask
(
mask
)
...
...
@@ -163,7 +166,7 @@ def video_classification_wrapper_factory(dataset):
f
"since it is not compatible with the transformations. Please use `output_format='TCHW'` instead."
)
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
video
,
audio
,
label
=
sample
video
=
datapoints
.
Video
(
video
)
...
...
@@ -201,14 +204,17 @@ def coco_dectection_wrapper_factory(dataset):
)
return
torch
.
from_numpy
(
mask
.
decode
(
segmentation
))
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image_id
=
dataset
.
ids
[
idx
]
image
,
target
=
sample
if
not
target
:
return
image
,
dict
(
image_id
=
image_id
)
batched_target
=
list_of_dicts_to_dict_of_lists
(
target
)
image_ids
=
batched_target
.
pop
(
"image_id"
)
image_id
=
batched_target
[
"image_id"
]
=
image_ids
.
pop
()
assert
all
(
other_image_id
==
image_id
for
other_image_id
in
image_ids
)
batched_target
[
"image_id"
]
=
image_id
spatial_size
=
tuple
(
F
.
get_spatial_size
(
image
))
batched_target
[
"boxes"
]
=
datapoints
.
BoundingBox
(
...
...
@@ -259,7 +265,7 @@ VOC_DETECTION_CATEGORY_TO_IDX = dict(zip(VOC_DETECTION_CATEGORIES, range(len(VOC
@
WRAPPER_FACTORIES
.
register
(
datasets
.
VOCDetection
)
def
voc_detection_wrapper_factory
(
dataset
):
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image
,
target
=
sample
batched_instances
=
list_of_dicts_to_dict_of_lists
(
target
[
"annotation"
][
"object"
])
...
...
@@ -294,7 +300,7 @@ def celeba_wrapper_factory(dataset):
if
any
(
target_type
in
dataset
.
target_type
for
target_type
in
[
"attr"
,
"landmarks"
]):
raise_not_supported
(
"`CelebA` dataset with `target_type=['attr', 'landmarks', ...]`"
)
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image
,
target
=
sample
target
=
wrap_target_by_type
(
...
...
@@ -318,7 +324,7 @@ KITTI_CATEGORY_TO_IDX = dict(zip(KITTI_CATEGORIES, range(len(KITTI_CATEGORIES)))
@
WRAPPER_FACTORIES
.
register
(
datasets
.
Kitti
)
def
kitti_wrapper_factory
(
dataset
):
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image
,
target
=
sample
if
target
is
not
None
:
...
...
@@ -336,7 +342,7 @@ def kitti_wrapper_factory(dataset):
@
WRAPPER_FACTORIES
.
register
(
datasets
.
OxfordIIITPet
)
def
oxford_iiit_pet_wrapper_factor
(
dataset
):
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image
,
target
=
sample
if
target
is
not
None
:
...
...
@@ -371,7 +377,7 @@ def cityscapes_wrapper_factory(dataset):
labels
.
append
(
label
)
return
dict
(
masks
=
datapoints
.
Mask
(
torch
.
stack
(
masks
)),
labels
=
torch
.
stack
(
labels
))
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image
,
target
=
sample
target
=
wrap_target_by_type
(
...
...
@@ -390,7 +396,7 @@ def cityscapes_wrapper_factory(dataset):
@
WRAPPER_FACTORIES
.
register
(
datasets
.
WIDERFace
)
def
widerface_wrapper
(
dataset
):
def
wrapper
(
sample
):
def
wrapper
(
idx
,
sample
):
image
,
target
=
sample
if
target
is
not
None
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment