Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
6f342d3a
Commit
6f342d3a
authored
Jan 19, 2017
by
Soumith Chintala
Committed by
GitHub
Jan 19, 2017
Browse files
Merge pull request #33 from pytorch/improvements
Minor improvements
parents
9896626a
72cd478e
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
20 additions
and
15 deletions
+20
-15
torchvision/datasets/mnist.py
torchvision/datasets/mnist.py
+2
-3
torchvision/transforms.py
torchvision/transforms.py
+18
-12
No files found.
torchvision/datasets/mnist.py
View file @
6f342d3a
...
...
@@ -72,7 +72,6 @@ class MNIST(data.Dataset):
import
gzip
if
self
.
_check_exists
():
print
(
'Files already downloaded'
)
return
# download files
...
...
@@ -98,8 +97,8 @@ class MNIST(data.Dataset):
os
.
unlink
(
file_path
)
# process and save as torch files
print
(
'Processing'
)
print
(
'Processing
...
'
)
training_set
=
(
read_image_file
(
os
.
path
.
join
(
self
.
root
,
self
.
raw_folder
,
'train-images-idx3-ubyte'
)),
read_label_file
(
os
.
path
.
join
(
self
.
root
,
self
.
raw_folder
,
'train-labels-idx1-ubyte'
))
...
...
torchvision/transforms.py
View file @
6f342d3a
...
...
@@ -8,12 +8,16 @@ import numbers
import
types
class
Compose
(
object
):
""" Composes several transforms together.
For example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""Composes several transforms together.
Args:
transforms (List[Transform]): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""
def
__init__
(
self
,
transforms
):
self
.
transforms
=
transforms
...
...
@@ -25,8 +29,9 @@ class Compose(object):
class
ToTensor
(
object
):
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
"""Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def
__call__
(
self
,
pic
):
if
isinstance
(
pic
,
np
.
ndarray
):
# handle numpy array
...
...
@@ -40,8 +45,9 @@ class ToTensor(object):
img
=
img
.
transpose
(
0
,
1
).
transpose
(
0
,
2
).
contiguous
()
return
img
.
float
().
div
(
255
)
class
ToPILImage
(
object
):
"""
Converts a torch.*Tensor of range [0, 1] and shape C x H x W
"""Converts a torch.*Tensor of range [0, 1] and shape C x H x W
or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C
to a PIL.Image of range [0, 255]
"""
...
...
@@ -56,7 +62,7 @@ class ToPILImage(object):
return
img
class
Normalize
(
object
):
"""
Given mean: (R, G, B) and std: (R, G, B),
"""Given mean: (R, G, B) and std: (R, G, B),
will normalize each channel of the torch.*Tensor, i.e.
channel = (channel - mean) / std
"""
...
...
@@ -72,7 +78,7 @@ class Normalize(object):
class
Scale
(
object
):
"""
Rescales the input PIL.Image to the given 'size'.
"""Rescales the input PIL.Image to the given 'size'.
'size' will be the size of the smaller edge.
For example, if height > width, then image will be
rescaled to (size * height / width, size)
...
...
@@ -128,7 +134,7 @@ class Pad(object):
return
ImageOps
.
expand
(
img
,
border
=
self
.
padding
,
fill
=
self
.
fill
)
class
Lambda
(
object
):
"""Applies a lambda as a transform"""
"""Applies a lambda as a transform
.
"""
def
__init__
(
self
,
lambd
):
assert
type
(
lambd
)
is
types
.
LambdaType
self
.
lambd
=
lambd
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment