".github/git@developer.sourcefind.cn:OpenDAS/torchani.git" did not exist on "eb89457ce184686413da8ad90a05b3385a37ebfe"
Unverified Commit 6a9b5492 authored by vfdev's avatar vfdev Committed by GitHub
Browse files

Enabled torch compile on _compute_affine_output_size (#8218)

parent 1de7a74a
...@@ -525,6 +525,13 @@ def _get_inverse_affine_matrix( ...@@ -525,6 +525,13 @@ def _get_inverse_affine_matrix(
def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]: def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
if torch._dynamo.is_compiling() and not torch.jit.is_scripting():
return _compute_affine_output_size_python(matrix, w, h)
else:
return _compute_affine_output_size_tensor(matrix, w, h)
def _compute_affine_output_size_tensor(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
# Inspired of PIL implementation: # Inspired of PIL implementation:
# https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054 # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054
...@@ -559,6 +566,29 @@ def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[in ...@@ -559,6 +566,29 @@ def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[in
return int(size[0]), int(size[1]) # w, h return int(size[0]), int(size[1]) # w, h
def _compute_affine_output_size_python(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
# Mostly copied from PIL implementation:
# The only difference is with transformed points as input matrix has zero translation part here and
# PIL has a centered translation part.
# https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054
a, b, c, d, e, f = matrix
xx = []
yy = []
half_w = 0.5 * w
half_h = 0.5 * h
for x, y in ((-half_w, -half_h), (half_w, -half_h), (half_w, half_h), (-half_w, half_h)):
nx = a * x + b * y + c
ny = d * x + e * y + f
xx.append(nx + half_w)
yy.append(ny + half_h)
nw = math.ceil(max(xx)) - math.floor(min(xx))
nh = math.ceil(max(yy)) - math.floor(min(yy))
return int(nw), int(nh) # w, h
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor: def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
input_shape = img.shape input_shape = img.shape
output_height, output_width = grid.shape[1], grid.shape[2] output_height, output_width = grid.shape[1], grid.shape[2]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment