Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
This is popularly used to train the Inception networks
- size: size of the smaller edge
- interpolation: Default: PIL.Image.BILINEAR
## Transforms on torch.*Tensor
### `Normalize(mean, std)`
Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std
## Conversion Transforms
-`ToTensor()` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
-`ToPILImage()` - Converts a torch.*Tensor of range [0, 1] and shape C x H x W or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C to a PIL.Image of range [0, 255]