This is simply implemented with an ImageFolder dataset, after the data is preprocessed [as described here](https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset)
# Transforms
Transforms are common image transforms.
They can be chained together using `transforms.Compose`
- `ToTensor()` - converts PIL Image to Tensor
- `Normalize(mean, std)` - normalizes the image given mean, std (for example: mean = [0.3, 1.2, 2.1])
- `Scale(size, interpolation=Image.BILINEAR)` - Scales the smaller image edge to the given size. Interpolation modes are options from PIL
- `CenterCrop(size)` - center-crops the image to the given size
- `RandomCrop(size)` - Random crops the image to the given size.
- `RandomHorizontalFlip()` - hflip the image with probability 0.5
- `RandomSizedCrop(size, interpolation=Image.BILINEAR)` - Random crop with size 0.08-1 and aspect ratio 3/4 - 4/3 (Inception-style)