Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
6279089a
Unverified
Commit
6279089a
authored
Aug 23, 2022
by
Philip Meier
Committed by
GitHub
Aug 23, 2022
Browse files
fix MixUp and CutMix (#6464)
* fix MixUp and CutMix * improve error message
parent
acf30e98
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
8 deletions
+14
-8
torchvision/prototype/transforms/_augment.py
torchvision/prototype/transforms/_augment.py
+14
-8
No files found.
torchvision/prototype/transforms/_augment.py
View file @
6279089a
...
@@ -99,10 +99,8 @@ class _BaseMixupCutmix(_RandomApplyTransform):
...
@@ -99,10 +99,8 @@ class _BaseMixupCutmix(_RandomApplyTransform):
def
forward
(
self
,
*
inpts
:
Any
)
->
Any
:
def
forward
(
self
,
*
inpts
:
Any
)
->
Any
:
sample
=
inpts
if
len
(
inpts
)
>
1
else
inpts
[
0
]
sample
=
inpts
if
len
(
inpts
)
>
1
else
inpts
[
0
]
if
not
(
if
not
(
has_any
(
sample
,
features
.
Image
,
is_simple_tensor
)
and
has_any
(
sample
,
features
.
OneHotLabel
)):
has_any
(
sample
,
features
.
Image
,
PIL
.
Image
.
Image
,
is_simple_tensor
)
and
has_any
(
sample
,
features
.
OneHotLabel
)
raise
TypeError
(
f
"
{
type
(
self
).
__name__
}
() is only defined for tensor images and one-hot labels."
)
):
raise
TypeError
(
f
"
{
type
(
self
).
__name__
}
() is only defined for Image's *and* OneHotLabel's."
)
if
has_any
(
sample
,
features
.
BoundingBox
,
features
.
SegmentationMask
,
features
.
Label
):
if
has_any
(
sample
,
features
.
BoundingBox
,
features
.
SegmentationMask
,
features
.
Label
):
raise
TypeError
(
raise
TypeError
(
f
"
{
type
(
self
).
__name__
}
() does not support bounding boxes, segmentation masks and plain labels."
f
"
{
type
(
self
).
__name__
}
() does not support bounding boxes, segmentation masks and plain labels."
...
@@ -123,12 +121,16 @@ class RandomMixup(_BaseMixupCutmix):
...
@@ -123,12 +121,16 @@ class RandomMixup(_BaseMixupCutmix):
def
_transform
(
self
,
inpt
:
Any
,
params
:
Dict
[
str
,
Any
])
->
Any
:
def
_transform
(
self
,
inpt
:
Any
,
params
:
Dict
[
str
,
Any
])
->
Any
:
lam
=
params
[
"lam"
]
lam
=
params
[
"lam"
]
if
isinstance
(
inpt
,
features
.
Image
):
if
isinstance
(
inpt
,
features
.
Image
)
or
is_simple_tensor
(
inpt
)
:
if
inpt
.
ndim
<
4
:
if
inpt
.
ndim
<
4
:
raise
ValueError
(
"Need a batch of images"
)
raise
ValueError
(
"Need a batch of images"
)
output
=
inpt
.
clone
()
output
=
inpt
.
clone
()
output
=
output
.
roll
(
1
,
-
4
).
mul_
(
1
-
lam
).
add_
(
output
.
mul_
(
lam
))
output
=
output
.
roll
(
1
,
-
4
).
mul_
(
1
-
lam
).
add_
(
output
.
mul_
(
lam
))
return
features
.
Image
.
new_like
(
inpt
,
output
)
if
isinstance
(
inpt
,
features
.
Image
):
output
=
features
.
Image
.
new_like
(
inpt
,
output
)
return
output
elif
isinstance
(
inpt
,
features
.
OneHotLabel
):
elif
isinstance
(
inpt
,
features
.
OneHotLabel
):
return
self
.
_mixup_onehotlabel
(
inpt
,
lam
)
return
self
.
_mixup_onehotlabel
(
inpt
,
lam
)
else
:
else
:
...
@@ -159,7 +161,7 @@ class RandomCutmix(_BaseMixupCutmix):
...
@@ -159,7 +161,7 @@ class RandomCutmix(_BaseMixupCutmix):
return
dict
(
box
=
box
,
lam_adjusted
=
lam_adjusted
)
return
dict
(
box
=
box
,
lam_adjusted
=
lam_adjusted
)
def
_transform
(
self
,
inpt
:
Any
,
params
:
Dict
[
str
,
Any
])
->
Any
:
def
_transform
(
self
,
inpt
:
Any
,
params
:
Dict
[
str
,
Any
])
->
Any
:
if
isinstance
(
inpt
,
features
.
Image
):
if
isinstance
(
inpt
,
features
.
Image
)
or
is_simple_tensor
(
inpt
)
:
box
=
params
[
"box"
]
box
=
params
[
"box"
]
if
inpt
.
ndim
<
4
:
if
inpt
.
ndim
<
4
:
raise
ValueError
(
"Need a batch of images"
)
raise
ValueError
(
"Need a batch of images"
)
...
@@ -167,7 +169,11 @@ class RandomCutmix(_BaseMixupCutmix):
...
@@ -167,7 +169,11 @@ class RandomCutmix(_BaseMixupCutmix):
image_rolled
=
inpt
.
roll
(
1
,
-
4
)
image_rolled
=
inpt
.
roll
(
1
,
-
4
)
output
=
inpt
.
clone
()
output
=
inpt
.
clone
()
output
[...,
y1
:
y2
,
x1
:
x2
]
=
image_rolled
[...,
y1
:
y2
,
x1
:
x2
]
output
[...,
y1
:
y2
,
x1
:
x2
]
=
image_rolled
[...,
y1
:
y2
,
x1
:
x2
]
return
features
.
Image
.
new_like
(
inpt
,
output
)
if
isinstance
(
inpt
,
features
.
Image
):
output
=
features
.
Image
.
new_like
(
inpt
,
output
)
return
output
elif
isinstance
(
inpt
,
features
.
OneHotLabel
):
elif
isinstance
(
inpt
,
features
.
OneHotLabel
):
lam_adjusted
=
params
[
"lam_adjusted"
]
lam_adjusted
=
params
[
"lam_adjusted"
]
return
self
.
_mixup_onehotlabel
(
inpt
,
lam_adjusted
)
return
self
.
_mixup_onehotlabel
(
inpt
,
lam_adjusted
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment