Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
5d614bd1
"vscode:/vscode.git/clone" did not exist on "869dbf1bf2e3c1ea05bd7b3515c8ba438bb9a4a2"
Unverified
Commit
5d614bd1
authored
Jun 09, 2021
by
Vivek Kumar
Committed by
GitHub
Jun 09, 2021
Browse files
Port normalize, linear_transformation, compose, random_apply, gaussian_blur to pytest (#4023)
parent
810811f8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
120 additions
and
127 deletions
+120
-127
test/test_transforms_tensor.py
test/test_transforms_tensor.py
+120
-127
No files found.
test/test_transforms_tensor.py
View file @
5d614bd1
...
...
@@ -143,133 +143,6 @@ class Tester(unittest.TestCase):
def
test_random_equalize
(
self
):
_test_op
(
F
.
equalize
,
T
.
RandomEqualize
,
device
=
self
.
device
)
def
test_normalize
(
self
):
fn
=
T
.
Normalize
((
0.5
,
0.5
,
0.5
),
(
0.5
,
0.5
,
0.5
))
tensor
,
_
=
_create_data
(
26
,
34
,
device
=
self
.
device
)
with
self
.
assertRaisesRegex
(
TypeError
,
r
"Input tensor should be a float tensor"
):
fn
(
tensor
)
batch_tensors
=
torch
.
rand
(
4
,
3
,
44
,
56
,
device
=
self
.
device
)
tensor
=
tensor
.
to
(
dtype
=
torch
.
float32
)
/
255.0
# test for class interface
scripted_fn
=
torch
.
jit
.
script
(
fn
)
_test_transform_vs_scripted
(
fn
,
scripted_fn
,
tensor
)
_test_transform_vs_scripted_on_batch
(
fn
,
scripted_fn
,
batch_tensors
)
with
get_tmp_dir
()
as
tmp_dir
:
scripted_fn
.
save
(
os
.
path
.
join
(
tmp_dir
,
"t_norm.pt"
))
def
test_linear_transformation
(
self
):
c
,
h
,
w
=
3
,
24
,
32
tensor
,
_
=
_create_data
(
h
,
w
,
channels
=
c
,
device
=
self
.
device
)
matrix
=
torch
.
rand
(
c
*
h
*
w
,
c
*
h
*
w
,
device
=
self
.
device
)
mean_vector
=
torch
.
rand
(
c
*
h
*
w
,
device
=
self
.
device
)
fn
=
T
.
LinearTransformation
(
matrix
,
mean_vector
)
scripted_fn
=
torch
.
jit
.
script
(
fn
)
_test_transform_vs_scripted
(
fn
,
scripted_fn
,
tensor
)
batch_tensors
=
torch
.
rand
(
4
,
c
,
h
,
w
,
device
=
self
.
device
)
# We skip some tests from _test_transform_vs_scripted_on_batch as
# results for scripted and non-scripted transformations are not exactly the same
torch
.
manual_seed
(
12
)
transformed_batch
=
fn
(
batch_tensors
)
torch
.
manual_seed
(
12
)
s_transformed_batch
=
scripted_fn
(
batch_tensors
)
assert_equal
(
transformed_batch
,
s_transformed_batch
)
with
get_tmp_dir
()
as
tmp_dir
:
scripted_fn
.
save
(
os
.
path
.
join
(
tmp_dir
,
"t_norm.pt"
))
def
test_compose
(
self
):
tensor
,
_
=
_create_data
(
26
,
34
,
device
=
self
.
device
)
tensor
=
tensor
.
to
(
dtype
=
torch
.
float32
)
/
255.0
transforms
=
T
.
Compose
([
T
.
CenterCrop
(
10
),
T
.
Normalize
((
0.485
,
0.456
,
0.406
),
(
0.229
,
0.224
,
0.225
)),
])
s_transforms
=
torch
.
nn
.
Sequential
(
*
transforms
.
transforms
)
scripted_fn
=
torch
.
jit
.
script
(
s_transforms
)
torch
.
manual_seed
(
12
)
transformed_tensor
=
transforms
(
tensor
)
torch
.
manual_seed
(
12
)
transformed_tensor_script
=
scripted_fn
(
tensor
)
assert_equal
(
transformed_tensor
,
transformed_tensor_script
,
msg
=
"{}"
.
format
(
transforms
))
t
=
T
.
Compose
([
lambda
x
:
x
,
])
with
self
.
assertRaisesRegex
(
RuntimeError
,
r
"Could not get name of python class object"
):
torch
.
jit
.
script
(
t
)
def
test_random_apply
(
self
):
tensor
,
_
=
_create_data
(
26
,
34
,
device
=
self
.
device
)
tensor
=
tensor
.
to
(
dtype
=
torch
.
float32
)
/
255.0
transforms
=
T
.
RandomApply
([
T
.
RandomHorizontalFlip
(),
T
.
ColorJitter
(),
],
p
=
0.4
)
s_transforms
=
T
.
RandomApply
(
torch
.
nn
.
ModuleList
([
T
.
RandomHorizontalFlip
(),
T
.
ColorJitter
(),
]),
p
=
0.4
)
scripted_fn
=
torch
.
jit
.
script
(
s_transforms
)
torch
.
manual_seed
(
12
)
transformed_tensor
=
transforms
(
tensor
)
torch
.
manual_seed
(
12
)
transformed_tensor_script
=
scripted_fn
(
tensor
)
assert_equal
(
transformed_tensor
,
transformed_tensor_script
,
msg
=
"{}"
.
format
(
transforms
))
if
torch
.
device
(
self
.
device
).
type
==
"cpu"
:
# Can't check this twice, otherwise
# "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
transforms
=
T
.
RandomApply
([
T
.
ColorJitter
(),
],
p
=
0.3
)
with
self
.
assertRaisesRegex
(
RuntimeError
,
r
"Module 'RandomApply' has no attribute 'transforms'"
):
torch
.
jit
.
script
(
transforms
)
def
test_gaussian_blur
(
self
):
tol
=
1.0
+
1e-10
_test_class_op
(
T
.
GaussianBlur
,
meth_kwargs
=
{
"kernel_size"
:
3
,
"sigma"
:
0.75
},
test_exact_match
=
False
,
device
=
self
.
device
,
agg_method
=
"max"
,
tol
=
tol
)
_test_class_op
(
T
.
GaussianBlur
,
meth_kwargs
=
{
"kernel_size"
:
23
,
"sigma"
:
[
0.1
,
2.0
]},
test_exact_match
=
False
,
device
=
self
.
device
,
agg_method
=
"max"
,
tol
=
tol
)
_test_class_op
(
T
.
GaussianBlur
,
meth_kwargs
=
{
"kernel_size"
:
23
,
"sigma"
:
(
0.1
,
2.0
)},
test_exact_match
=
False
,
device
=
self
.
device
,
agg_method
=
"max"
,
tol
=
tol
)
_test_class_op
(
T
.
GaussianBlur
,
meth_kwargs
=
{
"kernel_size"
:
[
3
,
3
],
"sigma"
:
(
1.0
,
1.0
)},
test_exact_match
=
False
,
device
=
self
.
device
,
agg_method
=
"max"
,
tol
=
tol
)
_test_class_op
(
T
.
GaussianBlur
,
meth_kwargs
=
{
"kernel_size"
:
(
3
,
3
),
"sigma"
:
(
0.1
,
2.0
)},
test_exact_match
=
False
,
device
=
self
.
device
,
agg_method
=
"max"
,
tol
=
tol
)
_test_class_op
(
T
.
GaussianBlur
,
meth_kwargs
=
{
"kernel_size"
:
[
23
],
"sigma"
:
0.75
},
test_exact_match
=
False
,
device
=
self
.
device
,
agg_method
=
"max"
,
tol
=
tol
)
def
test_random_erasing
(
self
):
img
=
torch
.
rand
(
3
,
60
,
60
)
...
...
@@ -735,5 +608,125 @@ def test_to_grayscale(device, Klass, meth_kwargs):
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
def
test_normalize
(
device
):
fn
=
T
.
Normalize
((
0.5
,
0.5
,
0.5
),
(
0.5
,
0.5
,
0.5
))
tensor
,
_
=
_create_data
(
26
,
34
,
device
=
device
)
with
pytest
.
raises
(
TypeError
,
match
=
"Input tensor should be a float tensor"
):
fn
(
tensor
)
batch_tensors
=
torch
.
rand
(
4
,
3
,
44
,
56
,
device
=
device
)
tensor
=
tensor
.
to
(
dtype
=
torch
.
float32
)
/
255.0
# test for class interface
scripted_fn
=
torch
.
jit
.
script
(
fn
)
_test_transform_vs_scripted
(
fn
,
scripted_fn
,
tensor
)
_test_transform_vs_scripted_on_batch
(
fn
,
scripted_fn
,
batch_tensors
)
with
get_tmp_dir
()
as
tmp_dir
:
scripted_fn
.
save
(
os
.
path
.
join
(
tmp_dir
,
"t_norm.pt"
))
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
def
test_linear_transformation
(
device
):
c
,
h
,
w
=
3
,
24
,
32
tensor
,
_
=
_create_data
(
h
,
w
,
channels
=
c
,
device
=
device
)
matrix
=
torch
.
rand
(
c
*
h
*
w
,
c
*
h
*
w
,
device
=
device
)
mean_vector
=
torch
.
rand
(
c
*
h
*
w
,
device
=
device
)
fn
=
T
.
LinearTransformation
(
matrix
,
mean_vector
)
scripted_fn
=
torch
.
jit
.
script
(
fn
)
_test_transform_vs_scripted
(
fn
,
scripted_fn
,
tensor
)
batch_tensors
=
torch
.
rand
(
4
,
c
,
h
,
w
,
device
=
device
)
# We skip some tests from _test_transform_vs_scripted_on_batch as
# results for scripted and non-scripted transformations are not exactly the same
torch
.
manual_seed
(
12
)
transformed_batch
=
fn
(
batch_tensors
)
torch
.
manual_seed
(
12
)
s_transformed_batch
=
scripted_fn
(
batch_tensors
)
assert_equal
(
transformed_batch
,
s_transformed_batch
)
with
get_tmp_dir
()
as
tmp_dir
:
scripted_fn
.
save
(
os
.
path
.
join
(
tmp_dir
,
"t_norm.pt"
))
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
def
test_compose
(
device
):
tensor
,
_
=
_create_data
(
26
,
34
,
device
=
device
)
tensor
=
tensor
.
to
(
dtype
=
torch
.
float32
)
/
255.0
transforms
=
T
.
Compose
([
T
.
CenterCrop
(
10
),
T
.
Normalize
((
0.485
,
0.456
,
0.406
),
(
0.229
,
0.224
,
0.225
)),
])
s_transforms
=
torch
.
nn
.
Sequential
(
*
transforms
.
transforms
)
scripted_fn
=
torch
.
jit
.
script
(
s_transforms
)
torch
.
manual_seed
(
12
)
transformed_tensor
=
transforms
(
tensor
)
torch
.
manual_seed
(
12
)
transformed_tensor_script
=
scripted_fn
(
tensor
)
assert_equal
(
transformed_tensor
,
transformed_tensor_script
,
msg
=
"{}"
.
format
(
transforms
))
t
=
T
.
Compose
([
lambda
x
:
x
,
])
with
pytest
.
raises
(
RuntimeError
,
match
=
"Could not get name of python class object"
):
torch
.
jit
.
script
(
t
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
def
test_random_apply
(
device
):
tensor
,
_
=
_create_data
(
26
,
34
,
device
=
device
)
tensor
=
tensor
.
to
(
dtype
=
torch
.
float32
)
/
255.0
transforms
=
T
.
RandomApply
([
T
.
RandomHorizontalFlip
(),
T
.
ColorJitter
(),
],
p
=
0.4
)
s_transforms
=
T
.
RandomApply
(
torch
.
nn
.
ModuleList
([
T
.
RandomHorizontalFlip
(),
T
.
ColorJitter
(),
]),
p
=
0.4
)
scripted_fn
=
torch
.
jit
.
script
(
s_transforms
)
torch
.
manual_seed
(
12
)
transformed_tensor
=
transforms
(
tensor
)
torch
.
manual_seed
(
12
)
transformed_tensor_script
=
scripted_fn
(
tensor
)
assert_equal
(
transformed_tensor
,
transformed_tensor_script
,
msg
=
"{}"
.
format
(
transforms
))
if
device
==
"cpu"
:
# Can't check this twice, otherwise
# "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
transforms
=
T
.
RandomApply
([
T
.
ColorJitter
(),
],
p
=
0.3
)
with
pytest
.
raises
(
RuntimeError
,
match
=
"Module 'RandomApply' has no attribute 'transforms'"
):
torch
.
jit
.
script
(
transforms
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'meth_kwargs'
,
[
{
"kernel_size"
:
3
,
"sigma"
:
0.75
},
{
"kernel_size"
:
23
,
"sigma"
:
[
0.1
,
2.0
]},
{
"kernel_size"
:
23
,
"sigma"
:
(
0.1
,
2.0
)},
{
"kernel_size"
:
[
3
,
3
],
"sigma"
:
(
1.0
,
1.0
)},
{
"kernel_size"
:
(
3
,
3
),
"sigma"
:
(
0.1
,
2.0
)},
{
"kernel_size"
:
[
23
],
"sigma"
:
0.75
}
])
def
test_gaussian_blur
(
device
,
meth_kwargs
):
tol
=
1.0
+
1e-10
_test_class_op
(
T
.
GaussianBlur
,
meth_kwargs
=
meth_kwargs
,
test_exact_match
=
False
,
device
=
device
,
agg_method
=
"max"
,
tol
=
tol
)
if
__name__
==
'__main__'
:
unittest
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment