Unverified Commit 5b611444 authored by Nicolas Hug's avatar Nicolas Hug Committed by GitHub
Browse files

Big doc revamp - simplify and improve the subpackage pages (#4783)

parent 57b3b42c
......@@ -14,6 +14,7 @@ docs/build
# sphinx-gallery
docs/source/auto_examples/
docs/source/gen_modules/
docs/source/generated/
# pytorch-sphinx-theme gets installed here
docs/src
......
......@@ -32,6 +32,7 @@ clean:
rm -rf $(BUILDDIR)/*
rm -rf $(SOURCEDIR)/auto_examples/ # sphinx-gallery
rm -rf $(SOURCEDIR)/gen_modules/ # sphinx-gallery
rm -rf $(SOURCEDIR)/generated/ # autosummary
.PHONY: help Makefile docset
......
.. role:: hidden
:class: hidden-section
.. currentmodule:: {{ module }}
{{ name | underline}}
.. autoclass:: {{ name }}
:members:
.. role:: hidden
:class: hidden-section
.. currentmodule:: {{ module }}
{{ name | underline}}
.. autoclass:: {{ name }}
:members:
__getitem__,
{% if "category_name" in methods %} category_name {% endif %}
:special-members:
.. role:: hidden
:class: hidden-section
.. currentmodule:: {{ module }}
{{ name | underline}}
.. autofunction:: {{ name }}
......@@ -144,6 +144,9 @@ html_css_files = [
htmlhelp_basename = "PyTorchdoc"
autosummary_generate = True
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
......
torchvision.datasets
====================
Datasets
========
Torchvision provides many built-in datasets in the ``torchvision.datasets``
module, as well as utility classes for building your own datasets.
Built-in datasets
~~~~~~~~~~~~~~~~~
All datasets are subclasses of :class:`torch.utils.data.Dataset`
i.e, they have ``__getitem__`` and ``__len__`` methods implemented.
......@@ -19,263 +25,58 @@ All the datasets have almost similar API. They all have two common arguments:
``transform`` and ``target_transform`` to transform the input and target respectively.
You can also create your own datasets using the provided :ref:`base classes <base_classes_datasets>`.
Caltech
~~~~~~~
.. autoclass:: Caltech101
:members: __getitem__
:special-members:
.. autoclass:: Caltech256
:members: __getitem__
:special-members:
CelebA
~~~~~~
.. autoclass:: CelebA
:members: __getitem__
:special-members:
CIFAR
~~~~~
.. autoclass:: CIFAR10
:members: __getitem__
:special-members:
.. autoclass:: CIFAR100
Cityscapes
~~~~~~~~~~
.. note ::
Requires Cityscape to be downloaded.
.. autoclass:: Cityscapes
:members: __getitem__
:special-members:
COCO
~~~~
.. note ::
These require the `COCO API to be installed`_
.. _COCO API to be installed: https://github.com/pdollar/coco/tree/master/PythonAPI
Captions
^^^^^^^^
.. autoclass:: CocoCaptions
:members: __getitem__
:special-members:
Detection
^^^^^^^^^
.. autoclass:: CocoDetection
:members: __getitem__
:special-members:
EMNIST
~~~~~~
.. autoclass:: EMNIST
FakeData
~~~~~~~~
.. autoclass:: FakeData
Fashion-MNIST
~~~~~~~~~~~~~
.. autoclass:: FashionMNIST
Flickr
~~~~~~
.. autoclass:: Flickr8k
:members: __getitem__
:special-members:
.. autoclass:: Flickr30k
:members: __getitem__
:special-members:
HMDB51
~~~~~~~
.. autoclass:: HMDB51
:members: __getitem__
:special-members:
ImageNet
~~~~~~~~~~~
.. autoclass:: ImageNet
.. note ::
This requires `scipy` to be installed
iNaturalist
~~~~~~~~~~~
.. autoclass:: INaturalist
:members: __getitem__, category_name
Kinetics-400
~~~~~~~~~~~~
.. autoclass:: Kinetics400
:members: __getitem__
:special-members:
KITTI
~~~~~~~~~
.. autoclass:: Kitti
:members: __getitem__
:special-members:
KMNIST
~~~~~~~~~~~~~
.. autoclass:: KMNIST
LFW
~~~~~
.. autoclass:: LFWPeople
:members: __getitem__
:special-members:
.. autoclass:: LFWPairs
:members: __getitem__
:special-members:
LSUN
~~~~
.. autoclass:: LSUN
:members: __getitem__
:special-members:
MNIST
~~~~~
.. autoclass:: MNIST
Omniglot
~~~~~~~~
.. autoclass:: Omniglot
PhotoTour
~~~~~~~~~
.. autoclass:: PhotoTour
:members: __getitem__
:special-members:
Places365
~~~~~~~~~
.. autoclass:: Places365
:members: __getitem__
:special-members:
QMNIST
~~~~~~
.. autoclass:: QMNIST
SBD
~~~~~~
.. autoclass:: SBDataset
:members: __getitem__
:special-members:
SBU
~~~
.. autoclass:: SBU
:members: __getitem__
:special-members:
SEMEION
~~~~~~~
.. autoclass:: SEMEION
:members: __getitem__
:special-members:
STL10
~~~~~
.. autoclass:: STL10
:members: __getitem__
:special-members:
SVHN
~~~~~
.. autoclass:: SVHN
:members: __getitem__
:special-members:
UCF101
~~~~~~~
.. autoclass:: UCF101
:members: __getitem__
:special-members:
USPS
~~~~~
.. autoclass:: USPS
:members: __getitem__
:special-members:
VOC
~~~~~~
.. autoclass:: VOCSegmentation
:members: __getitem__
:special-members:
.. autoclass:: VOCDetection
:members: __getitem__
:special-members:
WIDERFace
~~~~~~~~~
.. autoclass:: WIDERFace
:members: __getitem__
:special-members:
.. autosummary::
:toctree: generated/
:template: class_dataset.rst
Caltech101
Caltech256
CelebA
CIFAR10
CIFAR100
Cityscapes
CocoCaptions
CocoDetection
EMNIST
FakeData
FashionMNIST
Flickr8k
Flickr30k
HMDB51
ImageNet
INaturalist
Kinetics400
Kitti
KMNIST
LFWPeople
LFWPairs
LSUN
MNIST
Omniglot
PhotoTour
Places365
QMNIST
SBDataset
SBU
SEMEION
STL10
SVHN
UCF101
USPS
VOCSegmentation
VOCDetection
WIDERFace
.. _base_classes_datasets:
Base classes for custom datasets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: DatasetFolder
:members: __getitem__, find_classes, make_dataset
:special-members:
.. autoclass:: ImageFolder
:members: __getitem__
:special-members:
.. autosummary::
:toctree: generated/
:template: class.rst
.. autoclass:: VisionDataset
:members: __getitem__
:special-members:
DatasetFolder
ImageFolder
VisionDataset
[html writers]
table_style: colwidths-auto # Necessary for the table generated by autosummary to look decent
torchvision.models.feature_extraction
=====================================
Feature extraction for model inspection
=======================================
.. currentmodule:: torchvision.models.feature_extraction
Feature extraction utilities let us tap into our models to access intermediate
The ``torchvision.models.feature_extraction`` package contains
feature extraction utilities that let us tap into our models to access intermediate
transformations of our inputs. This could be useful for a variety of
applications in computer vision. Just a few examples are:
......@@ -157,6 +158,9 @@ Here is an example of how we might extract features for MaskRCNN:
API Reference
-------------
.. autofunction:: create_feature_extractor
.. autosummary::
:toctree: generated/
:template: function.rst
.. autofunction:: get_graph_node_names
create_feature_extractor
get_graph_node_names
......@@ -32,11 +32,11 @@ architectures, and common image transformations for computer vision.
:caption: Package Reference
datasets
io
transforms
models
feature_extraction
ops
transforms
io
utils
.. toctree::
......
torchvision.io
==============
Reading/Writing images and videos
=================================
.. currentmodule:: torchvision.io
......@@ -10,11 +10,13 @@ images.
Video
-----
.. autofunction:: read_video
.. autosummary::
:toctree: generated/
:template: function.rst
.. autofunction:: read_video_timestamps
.. autofunction:: write_video
read_video
read_video_timestamps
write_video
Fine-grained video API
......@@ -24,8 +26,11 @@ In addition to the :mod:`read_video` function, we provide a high-performance
lower-level API for more fine-grained control compared to the :mod:`read_video` function.
It does all this whilst fully supporting torchscript.
.. autoclass:: VideoReader
:members: __next__, get_metadata, set_current_stream, seek
.. autosummary::
:toctree: generated/
:template: class.rst
VideoReader
Example of inspecting a video:
......@@ -59,24 +64,23 @@ Example of inspecting a video:
Image
-----
.. autoclass:: ImageReadMode
.. autofunction:: read_image
.. autofunction:: decode_image
.. autofunction:: encode_jpeg
.. autofunction:: decode_jpeg
.. autofunction:: write_jpeg
.. autofunction:: encode_png
.. autofunction:: decode_png
.. autofunction:: write_png
.. autofunction:: read_file
.. autofunction:: write_file
.. autosummary::
:toctree: generated/
:template: class.rst
ImageReadMode
.. autosummary::
:toctree: generated/
:template: function.rst
read_image
decode_image
encode_jpeg
decode_jpeg
write_jpeg
encode_png
decode_png
write_png
read_file
write_file
.. _models:
torchvision.models
##################
Models and pre-trained weights
##############################
The models subpackage contains definitions of models for addressing
The ``torchvision.models`` subpackage contains definitions of models for addressing
different tasks, including: image classification, pixelwise semantic
segmentation, object detection, instance segmentation, person
keypoint detection and video classification.
......@@ -256,48 +256,72 @@ regnet_y_32gf 80.878 95.340
Alexnet
-------
.. autofunction:: alexnet
.. autosummary::
:toctree: generated/
:template: function.rst
alexnet
VGG
---
.. autofunction:: vgg11
.. autofunction:: vgg11_bn
.. autofunction:: vgg13
.. autofunction:: vgg13_bn
.. autofunction:: vgg16
.. autofunction:: vgg16_bn
.. autofunction:: vgg19
.. autofunction:: vgg19_bn
.. autosummary::
:toctree: generated/
:template: function.rst
vgg11
vgg11_bn
vgg13
vgg13_bn
vgg16
vgg16_bn
vgg19
vgg19_bn
ResNet
------
.. autofunction:: resnet18
.. autofunction:: resnet34
.. autofunction:: resnet50
.. autofunction:: resnet101
.. autofunction:: resnet152
.. autosummary::
:toctree: generated/
:template: function.rst
resnet18
resnet34
resnet50
resnet101
resnet152
SqueezeNet
----------
.. autofunction:: squeezenet1_0
.. autofunction:: squeezenet1_1
.. autosummary::
:toctree: generated/
:template: function.rst
squeezenet1_0
squeezenet1_1
DenseNet
---------
.. autofunction:: densenet121
.. autofunction:: densenet169
.. autofunction:: densenet161
.. autofunction:: densenet201
.. autosummary::
:toctree: generated/
:template: function.rst
densenet121
densenet169
densenet161
densenet201
Inception v3
------------
.. autofunction:: inception_v3
.. autosummary::
:toctree: generated/
:template: function.rst
inception_v3
.. note ::
This requires `scipy` to be installed
......@@ -306,7 +330,11 @@ Inception v3
GoogLeNet
------------
.. autofunction:: googlenet
.. autosummary::
:toctree: generated/
:template: function.rst
googlenet
.. note ::
This requires `scipy` to be installed
......@@ -315,71 +343,103 @@ GoogLeNet
ShuffleNet v2
-------------
.. autofunction:: shufflenet_v2_x0_5
.. autofunction:: shufflenet_v2_x1_0
.. autofunction:: shufflenet_v2_x1_5
.. autofunction:: shufflenet_v2_x2_0
.. autosummary::
:toctree: generated/
:template: function.rst
shufflenet_v2_x0_5
shufflenet_v2_x1_0
shufflenet_v2_x1_5
shufflenet_v2_x2_0
MobileNet v2
-------------
.. autofunction:: mobilenet_v2
.. autosummary::
:toctree: generated/
:template: function.rst
mobilenet_v2
MobileNet v3
-------------
.. autofunction:: mobilenet_v3_large
.. autofunction:: mobilenet_v3_small
.. autosummary::
:toctree: generated/
:template: function.rst
mobilenet_v3_large
mobilenet_v3_small
ResNext
-------
.. autofunction:: resnext50_32x4d
.. autofunction:: resnext101_32x8d
.. autosummary::
:toctree: generated/
:template: function.rst
resnext50_32x4d
resnext101_32x8d
Wide ResNet
-----------
.. autofunction:: wide_resnet50_2
.. autofunction:: wide_resnet101_2
.. autosummary::
:toctree: generated/
:template: function.rst
wide_resnet50_2
wide_resnet101_2
MNASNet
--------
.. autofunction:: mnasnet0_5
.. autofunction:: mnasnet0_75
.. autofunction:: mnasnet1_0
.. autofunction:: mnasnet1_3
.. autosummary::
:toctree: generated/
:template: function.rst
mnasnet0_5
mnasnet0_75
mnasnet1_0
mnasnet1_3
EfficientNet
------------
.. autofunction:: efficientnet_b0
.. autofunction:: efficientnet_b1
.. autofunction:: efficientnet_b2
.. autofunction:: efficientnet_b3
.. autofunction:: efficientnet_b4
.. autofunction:: efficientnet_b5
.. autofunction:: efficientnet_b6
.. autofunction:: efficientnet_b7
.. autosummary::
:toctree: generated/
:template: function.rst
efficientnet_b0
efficientnet_b1
efficientnet_b2
efficientnet_b3
efficientnet_b4
efficientnet_b5
efficientnet_b6
efficientnet_b7
RegNet
------------
.. autofunction:: regnet_y_400mf
.. autofunction:: regnet_y_800mf
.. autofunction:: regnet_y_1_6gf
.. autofunction:: regnet_y_3_2gf
.. autofunction:: regnet_y_8gf
.. autofunction:: regnet_y_16gf
.. autofunction:: regnet_y_32gf
.. autofunction:: regnet_x_400mf
.. autofunction:: regnet_x_800mf
.. autofunction:: regnet_x_1_6gf
.. autofunction:: regnet_x_3_2gf
.. autofunction:: regnet_x_8gf
.. autofunction:: regnet_x_16gf
.. autofunction:: regnet_x_32gf
.. autosummary::
:toctree: generated/
:template: function.rst
regnet_y_400mf
regnet_y_800mf
regnet_y_1_6gf
regnet_y_3_2gf
regnet_y_8gf
regnet_y_16gf
regnet_y_32gf
regnet_x_400mf
regnet_x_800mf
regnet_x_1_6gf
regnet_x_3_2gf
regnet_x_8gf
regnet_x_16gf
regnet_x_32gf
Quantized Models
----------------
......@@ -473,22 +533,34 @@ LR-ASPP MobileNetV3-Large 57.9 91.2
Fully Convolutional Networks
----------------------------
.. autofunction:: torchvision.models.segmentation.fcn_resnet50
.. autofunction:: torchvision.models.segmentation.fcn_resnet101
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.segmentation.fcn_resnet50
torchvision.models.segmentation.fcn_resnet101
DeepLabV3
---------
.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet50
.. autofunction:: torchvision.models.segmentation.deeplabv3_resnet101
.. autofunction:: torchvision.models.segmentation.deeplabv3_mobilenet_v3_large
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.segmentation.deeplabv3_resnet50
torchvision.models.segmentation.deeplabv3_resnet101
torchvision.models.segmentation.deeplabv3_mobilenet_v3_large
LR-ASPP
-------
.. autofunction:: torchvision.models.segmentation.lraspp_mobilenet_v3_large
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.segmentation.lraspp_mobilenet_v3_large
.. _object_det_inst_seg_pers_keypoint_det:
......@@ -615,39 +687,63 @@ Keypoint R-CNN ResNet-50 FPN 0.3789 0.1242
Faster R-CNN
------------
.. autofunction:: torchvision.models.detection.fasterrcnn_resnet50_fpn
.. autofunction:: torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn
.. autofunction:: torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.detection.fasterrcnn_resnet50_fpn
torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn
torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn
RetinaNet
---------
.. autofunction:: torchvision.models.detection.retinanet_resnet50_fpn
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.detection.retinanet_resnet50_fpn
SSD
---
.. autofunction:: torchvision.models.detection.ssd300_vgg16
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.detection.ssd300_vgg16
SSDlite
-------
.. autofunction:: torchvision.models.detection.ssdlite320_mobilenet_v3_large
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.detection.ssdlite320_mobilenet_v3_large
Mask R-CNN
----------
.. autofunction:: torchvision.models.detection.maskrcnn_resnet50_fpn
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.detection.maskrcnn_resnet50_fpn
Keypoint R-CNN
--------------
.. autofunction:: torchvision.models.detection.keypointrcnn_resnet50_fpn
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.detection.keypointrcnn_resnet50_fpn
Video classification
......@@ -686,14 +782,26 @@ ResNet (2+1)D 57.50 78.81
ResNet 3D
----------
.. autofunction:: torchvision.models.video.r3d_18
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.video.r3d_18
ResNet Mixed Convolution
------------------------
.. autofunction:: torchvision.models.video.mc3_18
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.video.mc3_18
ResNet (2+1)D
-------------
.. autofunction:: torchvision.models.video.r2plus1d_18
.. autosummary::
:toctree: generated/
:template: function.rst
torchvision.models.video.r2plus1d_18
.. _ops:
torchvision.ops
===============
Operators
=========
.. currentmodule:: torchvision.ops
......@@ -10,29 +10,36 @@ torchvision.ops
.. note::
All operators have native support for TorchScript.
.. autosummary::
:toctree: generated/
:template: function.rst
.. autofunction:: batched_nms
.. autofunction:: box_area
.. autofunction:: box_convert
.. autofunction:: box_iou
.. autofunction:: clip_boxes_to_image
.. autofunction:: deform_conv2d
.. autofunction:: generalized_box_iou
.. autofunction:: masks_to_boxes
.. autofunction:: nms
.. autofunction:: ps_roi_align
.. autofunction:: ps_roi_pool
.. autofunction:: remove_small_boxes
.. autofunction:: roi_align
.. autofunction:: roi_pool
.. autofunction:: sigmoid_focal_loss
.. autofunction:: stochastic_depth
.. autoclass:: RoIAlign
.. autoclass:: PSRoIAlign
.. autoclass:: RoIPool
.. autoclass:: PSRoIPool
.. autoclass:: DeformConv2d
.. autoclass:: MultiScaleRoIAlign
.. autoclass:: FeaturePyramidNetwork
.. autoclass:: StochasticDepth
batched_nms
box_area
box_convert
box_iou
clip_boxes_to_image
deform_conv2d
generalized_box_iou
masks_to_boxes
nms
ps_roi_align
ps_roi_pool
remove_small_boxes
roi_align
roi_pool
sigmoid_focal_loss
stochastic_depth
.. autosummary::
:toctree: generated/
:template: class.rst
RoIAlign
PSRoIAlign
RoIPool
PSRoIPool
DeformConv2d
MultiScaleRoIAlign
FeaturePyramidNetwork
StochasticDepth
.. _transforms:
torchvision.transforms
======================
Transforming and augmenting images
==================================
.. currentmodule:: torchvision.transforms
Transforms are common image transformations. They can be chained together using :class:`Compose`.
Transforms are common image transformations available in the
``torchvision.transforms`` module. They can be chained together using
:class:`Compose`.
Most transform classes have a function equivalent: :ref:`functional
transforms <functional_transforms>` give fine-grained control over the
transformations.
......@@ -90,131 +92,94 @@ For any custom transformations to be used with ``torch.jit.script``, they should
Compositions of transforms
--------------------------
.. autoclass:: Compose
.. autosummary::
:toctree: generated/
:template: class.rst
Compose
Transforms on PIL Image and torch.\*Tensor
------------------------------------------
.. autoclass:: CenterCrop
:members:
.. autoclass:: ColorJitter
:members:
.. autoclass:: FiveCrop
:members:
.. autoclass:: Grayscale
:members:
.. autoclass:: Pad
:members:
.. autoclass:: RandomAffine
:members:
.. autoclass:: RandomApply
.. autoclass:: RandomCrop
:members:
.. autoclass:: RandomGrayscale
:members:
.. autoclass:: RandomHorizontalFlip
:members:
.. autoclass:: RandomPerspective
:members:
.. autoclass:: RandomResizedCrop
:members:
.. autoclass:: RandomRotation
:members:
.. autoclass:: RandomSizedCrop
:members:
.. autoclass:: RandomVerticalFlip
:members:
.. autoclass:: Resize
:members:
.. autoclass:: Scale
:members:
.. autosummary::
:toctree: generated/
:template: class.rst
CenterCrop
ColorJitter
FiveCrop
Grayscale
Pad
RandomAffine
RandomApply
RandomCrop
RandomGrayscale
RandomHorizontalFlip
RandomPerspective
RandomResizedCrop
RandomRotation
RandomSizedCrop
RandomVerticalFlip
Resize
TenCrop
GaussianBlur
RandomInvert
RandomPosterize
RandomSolarize
RandomAdjustSharpness
RandomAutocontrast
RandomEqualize
.. autoclass:: TenCrop
:members:
.. autoclass:: GaussianBlur
:members:
.. autoclass:: RandomInvert
:members:
.. autoclass:: RandomPosterize
:members:
.. autoclass:: RandomSolarize
:members:
.. autoclass:: RandomAdjustSharpness
:members:
.. autoclass:: RandomAutocontrast
:members:
.. autoclass:: RandomEqualize
:members:
.. _transforms_pil_only:
Transforms on PIL Image only
----------------------------
.. autoclass:: RandomChoice
.. autosummary::
:toctree: generated/
:template: class.rst
.. autoclass:: RandomOrder
RandomChoice
RandomOrder
.. _transforms_tensor_only:
Transforms on torch.\*Tensor only
---------------------------------
.. autoclass:: LinearTransformation
:members:
.. autoclass:: Normalize
:members:
.. autosummary::
:toctree: generated/
:template: class.rst
.. autoclass:: RandomErasing
:members:
.. autoclass:: ConvertImageDtype
LinearTransformation
Normalize
RandomErasing
ConvertImageDtype
.. _conversion_transforms:
Conversion Transforms
---------------------
.. autoclass:: ToPILImage
:members:
.. autoclass:: ToTensor
:members:
.. autosummary::
:toctree: generated/
:template: class.rst
.. autoclass:: PILToTensor
:members:
ToPILImage
ToTensor
PILToTensor
Generic Transforms
------------------
.. autoclass:: Lambda
:members:
.. autosummary::
:toctree: generated/
:template: class.rst
Lambda
Automatic Augmentation Transforms
......@@ -226,27 +191,22 @@ ImageNet policies provide significant improvements when applied to other dataset
In TorchVision we implemented 3 policies learned on the following datasets: ImageNet, CIFAR10 and SVHN.
The new transform can be used standalone or mixed-and-matched with existing transforms:
.. autoclass:: AutoAugmentPolicy
:members:
.. autoclass:: AutoAugment
:members:
.. autosummary::
:toctree: generated/
:template: class.rst
`RandAugment <https://arxiv.org/abs/1909.13719>`_ is a simple high-performing Data Augmentation technique which improves the accuracy of Image Classification models.
.. autoclass:: RandAugment
:members:
`TrivialAugmentWide <https://arxiv.org/abs/2103.10158>`_ is a dataset-independent data-augmentation technique which improves the accuracy of Image Classification models.
.. autoclass:: TrivialAugmentWide
:members:
AutoAugmentPolicy
AutoAugment
RandAugment
TrivialAugmentWide
.. _functional_transforms:
Functional Transforms
---------------------
.. currentmodule:: torchvision.transforms.functional
Functional transforms give you fine-grained control of the transformation pipeline.
As opposed to the transformations above, functional transforms don't contain a random number
generator for their parameters.
......@@ -291,5 +251,41 @@ you can use a functional transform to build transform classes with custom behavi
rotation_transform = MyRotationTransform(angles=[-30, -15, 0, 15, 30])
.. automodule:: torchvision.transforms.functional
:members:
.. autosummary::
:toctree: generated/
:template: function.rst
adjust_brightness
adjust_contrast
adjust_gamma
adjust_hue
adjust_saturation
adjust_sharpness
affine
autocontrast
center_crop
convert_image_dtype
crop
equalize
erase
five_crop
gaussian_blur
get_image_num_channels
get_image_size
hflip
invert
normalize
pad
perspective
pil_to_tensor
posterize
resize
resized_crop
rgb_to_grayscale
rotate
solarize
ten_crop
to_grayscale
to_pil_image
to_tensor
vflip
.. _utils:
torchvision.utils
=================
Utils
=====
.. currentmodule:: torchvision.utils
.. autofunction:: make_grid
The ``torchvision.utils`` module contains various utilities, mostly :ref:`for
vizualization <sphx_glr_auto_examples_plot_visualization_utils.py>`.
.. autofunction:: save_image
.. currentmodule:: torchvision.utils
.. autofunction:: draw_bounding_boxes
.. autosummary::
:toctree: generated/
:template: function.rst
.. autofunction:: draw_segmentation_masks
draw_bounding_boxes
draw_segmentation_masks
make_grid
save_image
......@@ -10,6 +10,8 @@ from .vision import VisionDataset
class CocoDetection(VisionDataset):
"""`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset.
It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_.
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
......@@ -59,6 +61,8 @@ class CocoDetection(VisionDataset):
class CocoCaptions(CocoDetection):
"""`MS Coco Captions <https://cocodataset.org/#captions-2015>`_ Dataset.
It requires the `COCO API to be installed <https://github.com/pdollar/coco/tree/master/PythonAPI>`_.
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
......
......@@ -161,12 +161,10 @@ class DeformConv2d(nn.Module):
"""
Args:
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
out_height, out_width]): offsets to be applied for each position in the
convolution kernel.
mask (Tensor[batch_size, offset_groups * kernel_height * kernel_width,
out_height, out_width]): masks to be applied for each position in the
convolution kernel.
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width, out_height, out_width]):
offsets to be applied for each position in the convolution kernel.
mask (Tensor[batch_size, offset_groups * kernel_height * kernel_width, out_height, out_width]):
masks to be applied for each position in the convolution kernel.
"""
return deform_conv2d(
input,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment