"git@developer.sourcefind.cn:OpenDAS/torchaudio.git" did not exist on "2a0f4c067413411c9bd8cc88210320c8989580ff"
Commit 5a2bbc57 authored by Sasank Chilamkurthy's avatar Sasank Chilamkurthy
Browse files

First cut refactoring

(cherry picked from commit 71afec427baca8e37cd9e10d98812bc586e9a4ac)
parent 8e375670
......@@ -13,6 +13,112 @@ import types
import collections
def to_tensor(pic):
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
return img.float().div(255)
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float().div(255)
else:
return img
def to_pilimage(pic):
npimg = pic
mode = None
if isinstance(pic, torch.FloatTensor):
pic = pic.mul(255).byte()
if torch.is_tensor(pic):
npimg = np.transpose(pic.numpy(), (1, 2, 0))
assert isinstance(npimg, np.ndarray), 'pic should be Tensor or ndarray'
if npimg.shape[2] == 1:
npimg = npimg[:, :, 0]
if npimg.dtype == np.uint8:
mode = 'L'
if npimg.dtype == np.int16:
mode = 'I;16'
if npimg.dtype == np.int32:
mode = 'I'
elif npimg.dtype == np.float32:
mode = 'F'
else:
if npimg.dtype == np.uint8:
mode = 'RGB'
assert mode is not None, '{} is not supported'.format(npimg.dtype)
return Image.fromarray(npimg, mode=mode)
def normalize(tensor, mean, std):
# TODO: make efficient
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor
def scale(img, size, interpolation=Image.BILINEAR):
assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size, interpolation)
def pad(img, padding, fill=0):
assert isinstance(padding, numbers.Number)
assert isinstance(fill, numbers.Number) or isinstance(fill, str) or isinstance(fill, tuple)
return ImageOps.expand(img, border=padding, fill=fill)
def crop(img, x, y, w, h):
return img.crop((x, y, x + w, y + h))
def scaled_crop(img, x, y, w, h, size, interpolation=Image.BILINEAR):
img = crop(img, x, y, w, h)
img = scale(img, size, interpolation)
def hflip(img):
return img.transpose(Image.FLIP_LEFT_RIGHT)
class Compose(object):
"""Composes several transforms together.
......@@ -50,39 +156,7 @@ class ToTensor(object):
Returns:
Tensor: Converted image.
"""
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
return img.float().div(255)
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float().div(255)
else:
return img
return to_tensor(pic)
class ToPILImage(object):
......@@ -101,29 +175,7 @@ class ToPILImage(object):
PIL.Image: Image converted to PIL.Image.
"""
npimg = pic
mode = None
if isinstance(pic, torch.FloatTensor):
pic = pic.mul(255).byte()
if torch.is_tensor(pic):
npimg = np.transpose(pic.numpy(), (1, 2, 0))
assert isinstance(npimg, np.ndarray), 'pic should be Tensor or ndarray'
if npimg.shape[2] == 1:
npimg = npimg[:, :, 0]
if npimg.dtype == np.uint8:
mode = 'L'
if npimg.dtype == np.int16:
mode = 'I;16'
if npimg.dtype == np.int32:
mode = 'I'
elif npimg.dtype == np.float32:
mode = 'F'
else:
if npimg.dtype == np.uint8:
mode = 'RGB'
assert mode is not None, '{} is not supported'.format(npimg.dtype)
return Image.fromarray(npimg, mode=mode)
return to_pilimage(pic)
class Normalize(object):
......@@ -151,10 +203,7 @@ class Normalize(object):
Returns:
Tensor: Normalized image.
"""
# TODO: make efficient
for t, m, s in zip(tensor, self.mean, self.std):
t.sub_(m).div_(s)
return tensor
return normalize(tensor, self.mean, self.std)
class Scale(object):
......@@ -183,20 +232,7 @@ class Scale(object):
Returns:
PIL.Image: Rescaled image.
"""
if isinstance(self.size, int):
w, h = img.size
if (w <= h and w == self.size) or (h <= w and h == self.size):
return img
if w < h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), self.interpolation)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), self.interpolation)
else:
return img.resize(self.size, self.interpolation)
return scale(img, self.size, self.interpolation)
class CenterCrop(object):
......@@ -214,6 +250,13 @@ class CenterCrop(object):
else:
self.size = size
def get_params(self, img):
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return x1, y1, tw, th
def __call__(self, img):
"""
Args:
......@@ -222,11 +265,8 @@ class CenterCrop(object):
Returns:
PIL.Image: Cropped image.
"""
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return img.crop((x1, y1, x1 + tw, y1 + th))
x1, y1, tw, th = self.get_params(img)
return crop(img, x1, y1, tw, th)
class Pad(object):
......@@ -260,7 +300,7 @@ class Pad(object):
Returns:
PIL.Image: Padded image.
"""
return ImageOps.expand(img, border=self.padding, fill=self.fill)
return pad(img, self.padding, self.fill)
class Lambda(object):
......@@ -298,6 +338,16 @@ class RandomCrop(object):
self.size = size
self.padding = padding
def get_params(self, img):
w, h = img.size
th, tw = self.size
if w == tw and h == th:
return img
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
return x1, y1, tw, th
def __call__(self, img):
"""
Args:
......@@ -307,16 +357,11 @@ class RandomCrop(object):
PIL.Image: Cropped image.
"""
if self.padding > 0:
img = ImageOps.expand(img, border=self.padding, fill=0)
img = pad(img, self.padding)
w, h = img.size
th, tw = self.size
if w == tw and h == th:
return img
x1, y1, tw, th = self.get_params(img)
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
return img.crop((x1, y1, x1 + tw, y1 + th))
return crop(img, x1, y1, tw, th)
class RandomHorizontalFlip(object):
......@@ -331,7 +376,7 @@ class RandomHorizontalFlip(object):
PIL.Image: Randomly flipped image.
"""
if random.random() < 0.5:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return hflip(img)
return img
......@@ -352,7 +397,7 @@ class RandomSizedCrop(object):
self.size = size
self.interpolation = interpolation
def __call__(self, img):
def get_params(self, img):
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.08, 1.0) * area
......@@ -365,15 +410,16 @@ class RandomSizedCrop(object):
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
assert(img.size == (w, h))
return img.resize((self.size, self.size), self.interpolation)
x = random.randint(0, img.size[0] - w)
y = random.randint(0, img.size[1] - h)
return x, y, w, h
# Fallback
scale = Scale(self.size, interpolation=self.interpolation)
crop = CenterCrop(self.size)
return crop(scale(img))
w = min(img.size[0], img.shape[1])
x = (img.shape[0] - w) // 2
y = (img.shape[1] - w) // 2
return x, y, w, w
def __call__(self, img):
x, y, w, h = self.get_params(img)
return scaled_crop(img, x, y, w, h, self.size, self.interpolation)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment