Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
5785e2b0
"tutorials/vscode:/vscode.git/clone" did not exist on "6ce3c178b078eda89976dfdba58f432742d17f0b"
Unverified
Commit
5785e2b0
authored
Dec 12, 2022
by
Vasilis Vryniotis
Committed by
GitHub
Dec 12, 2022
Browse files
Allow dropout overwrites on EfficientNet (#7031)
parent
5a75fa9f
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
36 additions
and
14 deletions
+36
-14
test/smoke_test.py
test/smoke_test.py
+5
-3
torchvision/models/efficientnet.py
torchvision/models/efficientnet.py
+31
-11
No files found.
test/smoke_test.py
View file @
5785e2b0
...
...
@@ -17,6 +17,7 @@ def smoke_test_torchvision() -> None:
all
(
x
is
not
None
for
x
in
[
torch
.
ops
.
image
.
decode_png
,
torch
.
ops
.
torchvision
.
roi_align
]),
)
def
smoke_test_torchvision_read_decode
()
->
None
:
img_jpg
=
read_image
(
str
(
SCRIPT_DIR
/
"assets"
/
"encode_jpeg"
/
"grace_hopper_517x606.jpg"
))
if
img_jpg
.
ndim
!=
3
or
img_jpg
.
numel
()
<
100
:
...
...
@@ -25,6 +26,7 @@ def smoke_test_torchvision_read_decode() -> None:
if
img_png
.
ndim
!=
3
or
img_png
.
numel
()
<
100
:
raise
RuntimeError
(
f
"Unexpected shape of img_png:
{
img_png
.
shape
}
"
)
def
smoke_test_torchvision_resnet50_classify
(
device
:
str
=
"cpu"
)
->
None
:
img
=
read_image
(
str
(
SCRIPT_DIR
/
".."
/
"gallery"
/
"assets"
/
"dog2.jpg"
)).
to
(
device
)
...
...
@@ -47,9 +49,8 @@ def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None:
expected_category
=
"German shepherd"
print
(
f
"
{
category_name
}
(
{
device
}
):
{
100
*
score
:.
1
f
}
%"
)
if
category_name
!=
expected_category
:
raise
RuntimeError
(
f
"Failed ResNet50 classify
{
category_name
}
Expected:
{
expected_category
}
"
)
raise
RuntimeError
(
f
"Failed ResNet50 classify
{
category_name
}
Expected:
{
expected_category
}
"
)
def
main
()
->
None
:
print
(
f
"torchvision:
{
torchvision
.
__version__
}
"
)
...
...
@@ -59,5 +60,6 @@ def main() -> None:
if
torch
.
cuda
.
is_available
():
smoke_test_torchvision_resnet50_classify
(
"cuda"
)
if
__name__
==
"__main__"
:
main
()
torchvision/models/efficientnet.py
View file @
5785e2b0
...
...
@@ -779,7 +779,9 @@ def efficientnet_b0(
weights
=
EfficientNet_B0_Weights
.
verify
(
weights
)
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b0"
,
width_mult
=
1.0
,
depth_mult
=
1.0
)
return
_efficientnet
(
inverted_residual_setting
,
0.2
,
last_channel
,
weights
,
progress
,
**
kwargs
)
return
_efficientnet
(
inverted_residual_setting
,
kwargs
.
pop
(
"dropout"
,
0.2
),
last_channel
,
weights
,
progress
,
**
kwargs
)
@
register_model
()
...
...
@@ -808,7 +810,9 @@ def efficientnet_b1(
weights
=
EfficientNet_B1_Weights
.
verify
(
weights
)
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b1"
,
width_mult
=
1.0
,
depth_mult
=
1.1
)
return
_efficientnet
(
inverted_residual_setting
,
0.2
,
last_channel
,
weights
,
progress
,
**
kwargs
)
return
_efficientnet
(
inverted_residual_setting
,
kwargs
.
pop
(
"dropout"
,
0.2
),
last_channel
,
weights
,
progress
,
**
kwargs
)
@
register_model
()
...
...
@@ -837,7 +841,9 @@ def efficientnet_b2(
weights
=
EfficientNet_B2_Weights
.
verify
(
weights
)
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b2"
,
width_mult
=
1.1
,
depth_mult
=
1.2
)
return
_efficientnet
(
inverted_residual_setting
,
0.3
,
last_channel
,
weights
,
progress
,
**
kwargs
)
return
_efficientnet
(
inverted_residual_setting
,
kwargs
.
pop
(
"dropout"
,
0.3
),
last_channel
,
weights
,
progress
,
**
kwargs
)
@
register_model
()
...
...
@@ -866,7 +872,14 @@ def efficientnet_b3(
weights
=
EfficientNet_B3_Weights
.
verify
(
weights
)
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b3"
,
width_mult
=
1.2
,
depth_mult
=
1.4
)
return
_efficientnet
(
inverted_residual_setting
,
0.3
,
last_channel
,
weights
,
progress
,
**
kwargs
)
return
_efficientnet
(
inverted_residual_setting
,
kwargs
.
pop
(
"dropout"
,
0.3
),
last_channel
,
weights
,
progress
,
**
kwargs
,
)
@
register_model
()
...
...
@@ -895,7 +908,14 @@ def efficientnet_b4(
weights
=
EfficientNet_B4_Weights
.
verify
(
weights
)
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b4"
,
width_mult
=
1.4
,
depth_mult
=
1.8
)
return
_efficientnet
(
inverted_residual_setting
,
0.4
,
last_channel
,
weights
,
progress
,
**
kwargs
)
return
_efficientnet
(
inverted_residual_setting
,
kwargs
.
pop
(
"dropout"
,
0.4
),
last_channel
,
weights
,
progress
,
**
kwargs
,
)
@
register_model
()
...
...
@@ -926,7 +946,7 @@ def efficientnet_b5(
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b5"
,
width_mult
=
1.6
,
depth_mult
=
2.2
)
return
_efficientnet
(
inverted_residual_setting
,
0.4
,
kwargs
.
pop
(
"dropout"
,
0.4
)
,
last_channel
,
weights
,
progress
,
...
...
@@ -963,7 +983,7 @@ def efficientnet_b6(
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b6"
,
width_mult
=
1.8
,
depth_mult
=
2.6
)
return
_efficientnet
(
inverted_residual_setting
,
0.5
,
kwargs
.
pop
(
"dropout"
,
0.5
)
,
last_channel
,
weights
,
progress
,
...
...
@@ -1000,7 +1020,7 @@ def efficientnet_b7(
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_b7"
,
width_mult
=
2.0
,
depth_mult
=
3.1
)
return
_efficientnet
(
inverted_residual_setting
,
0.5
,
kwargs
.
pop
(
"dropout"
,
0.5
)
,
last_channel
,
weights
,
progress
,
...
...
@@ -1038,7 +1058,7 @@ def efficientnet_v2_s(
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_v2_s"
)
return
_efficientnet
(
inverted_residual_setting
,
0.2
,
kwargs
.
pop
(
"dropout"
,
0.2
)
,
last_channel
,
weights
,
progress
,
...
...
@@ -1076,7 +1096,7 @@ def efficientnet_v2_m(
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_v2_m"
)
return
_efficientnet
(
inverted_residual_setting
,
0.3
,
kwargs
.
pop
(
"dropout"
,
0.3
)
,
last_channel
,
weights
,
progress
,
...
...
@@ -1114,7 +1134,7 @@ def efficientnet_v2_l(
inverted_residual_setting
,
last_channel
=
_efficientnet_conf
(
"efficientnet_v2_l"
)
return
_efficientnet
(
inverted_residual_setting
,
0.4
,
kwargs
.
pop
(
"dropout"
,
0.4
)
,
last_channel
,
weights
,
progress
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment