"git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "1afc21855eb1f5575bd61037a7ee44522ccf401e"
Unverified Commit 53869eb8 authored by Nicolas Hug's avatar Nicolas Hug Committed by GitHub
Browse files

Add `sanitize_bounding_boxes` kernel/functional (#8308)

parent d1f3a7b3
......@@ -414,6 +414,7 @@ Functionals
v2.functional.normalize
v2.functional.erase
v2.functional.sanitize_bounding_boxes
v2.functional.clamp_bounding_boxes
v2.functional.uniform_temporal_subsample
......
......@@ -5675,18 +5675,7 @@ def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
class TestSanitizeBoundingBoxes:
@pytest.mark.parametrize("min_size", (1, 10))
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_transform(self, min_size, labels_getter, sample_type):
if sample_type is tuple and not isinstance(labels_getter, str):
# The "lambda inputs: inputs["labels"]" labels_getter used in this test
# doesn't work if the input is a tuple.
return
H, W = 256, 128
def _get_boxes_and_valid_mask(self, H=256, W=128, min_size=10):
boxes_and_validity = [
([0, 1, 10, 1], False), # Y1 == Y2
([0, 1, 0, 20], False), # X1 == X2
......@@ -5706,11 +5695,7 @@ class TestSanitizeBoundingBoxes:
]
random.shuffle(boxes_and_validity) # For test robustness: mix order of wrong and correct cases
boxes, is_valid_mask = zip(*boxes_and_validity)
valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]
boxes = torch.tensor(boxes)
labels = torch.arange(boxes.shape[0])
boxes, expected_valid_mask = zip(*boxes_and_validity)
boxes = tv_tensors.BoundingBoxes(
boxes,
......@@ -5718,6 +5703,23 @@ class TestSanitizeBoundingBoxes:
canvas_size=(H, W),
)
return boxes, expected_valid_mask
@pytest.mark.parametrize("min_size", (1, 10))
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_transform(self, min_size, labels_getter, sample_type):
if sample_type is tuple and not isinstance(labels_getter, str):
# The "lambda inputs: inputs["labels"]" labels_getter used in this test
# doesn't work if the input is a tuple.
return
H, W = 256, 128
boxes, expected_valid_mask = self._get_boxes_and_valid_mask(H=H, W=W, min_size=min_size)
valid_indices = [i for (i, is_valid) in enumerate(expected_valid_mask) if is_valid]
labels = torch.arange(boxes.shape[0])
masks = tv_tensors.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
whatever = torch.rand(10)
input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
......@@ -5763,6 +5765,44 @@ class TestSanitizeBoundingBoxes:
# This works because we conveniently set labels to arange(num_boxes)
assert out_labels.tolist() == valid_indices
@pytest.mark.parametrize("input_type", (torch.Tensor, tv_tensors.BoundingBoxes))
def test_functional(self, input_type):
# Note: the "functional" F.sanitize_bounding_boxes was added after the class, so there is some
# redundancy with test_transform() in terms of correctness checks. But that's OK.
H, W, min_size = 256, 128, 10
boxes, expected_valid_mask = self._get_boxes_and_valid_mask(H=H, W=W, min_size=min_size)
if input_type is tv_tensors.BoundingBoxes:
format = canvas_size = None
else:
# just passing "XYXY" explicitly to make sure we support strings
format, canvas_size = "XYXY", boxes.canvas_size
boxes = boxes.as_subclass(torch.Tensor)
boxes, valid = F.sanitize_bounding_boxes(boxes, format=format, canvas_size=canvas_size, min_size=min_size)
assert_equal(valid, torch.tensor(expected_valid_mask))
assert type(valid) == torch.Tensor
assert boxes.shape[0] == sum(valid)
assert isinstance(boxes, input_type)
def test_kernel(self):
H, W, min_size = 256, 128, 10
boxes, _ = self._get_boxes_and_valid_mask(H=H, W=W, min_size=min_size)
format, canvas_size = boxes.format, boxes.canvas_size
boxes = boxes.as_subclass(torch.Tensor)
check_kernel(
F.sanitize_bounding_boxes,
input=boxes,
format=format,
canvas_size=canvas_size,
check_batched_vs_unbatched=False,
)
def test_no_label(self):
# Non-regression test for https://github.com/pytorch/vision/issues/7878
......@@ -5776,7 +5816,7 @@ class TestSanitizeBoundingBoxes:
assert isinstance(out_img, tv_tensors.Image)
assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
def test_errors(self):
def test_errors_transform(self):
good_bbox = tv_tensors.BoundingBoxes(
[[0, 0, 10, 10]],
format=tv_tensors.BoundingBoxFormat.XYXY,
......@@ -5799,3 +5839,26 @@ class TestSanitizeBoundingBoxes:
with pytest.raises(ValueError, match="Number of boxes"):
different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
transforms.SanitizeBoundingBoxes()(different_sizes)
def test_errors_functional(self):
good_bbox = tv_tensors.BoundingBoxes(
[[0, 0, 10, 10]],
format=tv_tensors.BoundingBoxFormat.XYXY,
canvas_size=(20, 20),
)
with pytest.raises(ValueError, match="canvas_size cannot be None if bounding_boxes is a pure tensor"):
F.sanitize_bounding_boxes(good_bbox.as_subclass(torch.Tensor), format="XYXY", canvas_size=None)
with pytest.raises(ValueError, match="canvas_size cannot be None if bounding_boxes is a pure tensor"):
F.sanitize_bounding_boxes(good_bbox.as_subclass(torch.Tensor), format=None, canvas_size=(10, 10))
with pytest.raises(ValueError, match="canvas_size must be None when bounding_boxes is a tv_tensors"):
F.sanitize_bounding_boxes(good_bbox, format="XYXY", canvas_size=None)
with pytest.raises(ValueError, match="canvas_size must be None when bounding_boxes is a tv_tensors"):
F.sanitize_bounding_boxes(good_bbox, format="XYXY", canvas_size=None)
with pytest.raises(ValueError, match="bouding_boxes must be a tv_tensors.BoundingBoxes instance or a"):
F.sanitize_bounding_boxes(good_bbox.tolist())
......@@ -123,7 +123,7 @@ class SimpleCopyPaste(Transform):
if not (len(images) == len(bboxes) == len(masks) == len(labels)):
raise TypeError(
f"{type(self).__name__}() requires input sample to contain equal sized list of Images, "
"BoundingBoxeses, Masks and Labels or OneHotLabels."
"BoundingBoxes, Masks and Labels or OneHotLabels."
)
targets = []
......
import warnings
from typing import Any, Callable, cast, Dict, List, Optional, Sequence, Type, Union
from typing import Any, Callable, Dict, List, Optional, Sequence, Type, Union
import PIL.Image
......@@ -369,28 +369,14 @@ class SanitizeBoundingBoxes(Transform):
f"Number of boxes (shape={boxes.shape}) and number of labels (shape={labels.shape}) do not match."
)
boxes = cast(
tv_tensors.BoundingBoxes,
F.convert_bounding_box_format(
boxes,
new_format=tv_tensors.BoundingBoxFormat.XYXY,
),
valid = F._misc._get_sanitize_bounding_boxes_mask(
boxes,
format=boxes.format,
canvas_size=boxes.canvas_size,
min_size=self.min_size,
)
ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
valid = (ws >= self.min_size) & (hs >= self.min_size) & (boxes >= 0).all(dim=-1)
# TODO: Do we really need to check for out of bounds here? All
# transforms should be clamping anyway, so this should never happen?
image_h, image_w = boxes.canvas_size
valid &= (boxes[:, 0] <= image_w) & (boxes[:, 2] <= image_w)
valid &= (boxes[:, 1] <= image_h) & (boxes[:, 3] <= image_h)
params = dict(valid=valid.as_subclass(torch.Tensor), labels=labels)
flat_outputs = [
# Even-though it may look like we're transforming all inputs, we don't:
# _transform() will only care about BoundingBoxeses and the labels
self._transform(inpt, params)
for inpt in flat_inputs
]
params = dict(valid=valid, labels=labels)
flat_outputs = [self._transform(inpt, params) for inpt in flat_inputs]
return tree_unflatten(flat_outputs, spec)
......
......@@ -167,6 +167,7 @@ from ._misc import (
normalize,
normalize_image,
normalize_video,
sanitize_bounding_boxes,
to_dtype,
to_dtype_image,
to_dtype_video,
......
import math
from typing import List, Optional
from typing import List, Optional, Tuple
import PIL.Image
import torch
......@@ -11,7 +11,9 @@ from torchvision.transforms.functional import pil_to_tensor, to_pil_image
from torchvision.utils import _log_api_usage_once
from ._utils import _get_kernel, _register_kernel_internal
from ._meta import _convert_bounding_box_format
from ._utils import _get_kernel, _register_kernel_internal, is_pure_tensor
def normalize(
......@@ -275,3 +277,89 @@ def to_dtype_video(video: torch.Tensor, dtype: torch.dtype = torch.float, scale:
def _to_dtype_tensor_dispatch(inpt: torch.Tensor, dtype: torch.dtype, scale: bool = False) -> torch.Tensor:
# We don't need to unwrap and rewrap here, since TVTensor.to() preserves the type
return inpt.to(dtype)
def sanitize_bounding_boxes(
bounding_boxes: torch.Tensor,
format: Optional[tv_tensors.BoundingBoxFormat] = None,
canvas_size: Optional[Tuple[int, int]] = None,
min_size: float = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Remove degenerate/invalid bounding boxes and return the corresponding indexing mask.
This removes bounding boxes that:
- are below a given ``min_size``: by default this also removes degenerate boxes that have e.g. X2 <= X1.
- have any coordinate outside of their corresponding image. You may want to
call :func:`~torchvision.transforms.v2.functional.clamp_bounding_boxes` first to avoid undesired removals.
It is recommended to call it at the end of a pipeline, before passing the
input to the models. It is critical to call this transform if
:class:`~torchvision.transforms.v2.RandomIoUCrop` was called.
If you want to be extra careful, you may call it after all transforms that
may modify bounding boxes but once at the end should be enough in most
cases.
Args:
bounding_boxes (Tensor or :class:`~torchvision.tv_tensors.BoundingBoxes`): The bounding boxes to be sanitized.
format (str or :class:`~torchvision.tv_tensors.BoundingBoxFormat`, optional): The format of the bounding boxes.
Must be left to none if ``bounding_boxes`` is a :class:`~torchvision.tv_tensors.BoundingBoxes` object.
canvas_size (tuple of int, optional): The canvas_size of the bounding boxes
(size of the corresponding image/video).
Must be left to none if ``bounding_boxes`` is a :class:`~torchvision.tv_tensors.BoundingBoxes` object.
min_size (float, optional) The size below which bounding boxes are removed. Default is 1.
Returns:
out (tuple of Tensors): The subset of valid bounding boxes, and the corresponding indexing mask.
The mask can then be used to subset other tensors (e.g. labels) that are associated with the bounding boxes.
"""
if torch.jit.is_scripting() or is_pure_tensor(bounding_boxes):
if format is None or canvas_size is None:
raise ValueError(
"format and canvas_size cannot be None if bounding_boxes is a pure tensor. "
f"Got format={format} and canvas_size={canvas_size}."
"Set those to appropriate values or pass bounding_boxes as a tv_tensors.BoundingBoxes object."
)
if isinstance(format, str):
format = tv_tensors.BoundingBoxFormat[format.upper()]
valid = _get_sanitize_bounding_boxes_mask(
bounding_boxes, format=format, canvas_size=canvas_size, min_size=min_size
)
bounding_boxes = bounding_boxes[valid]
else:
if not isinstance(bounding_boxes, tv_tensors.BoundingBoxes):
raise ValueError("bouding_boxes must be a tv_tensors.BoundingBoxes instance or a pure tensor.")
if format is not None or canvas_size is not None:
raise ValueError(
"format and canvas_size must be None when bounding_boxes is a tv_tensors.BoundingBoxes instance. "
f"Got format={format} and canvas_size={canvas_size}. "
"Leave those to None or pass bouding_boxes as a pure tensor."
)
valid = _get_sanitize_bounding_boxes_mask(
bounding_boxes, format=bounding_boxes.format, canvas_size=bounding_boxes.canvas_size, min_size=min_size
)
bounding_boxes = tv_tensors.wrap(bounding_boxes[valid], like=bounding_boxes)
return bounding_boxes, valid
def _get_sanitize_bounding_boxes_mask(
bounding_boxes: torch.Tensor,
format: tv_tensors.BoundingBoxFormat,
canvas_size: Tuple[int, int],
min_size: float = 1.0,
) -> torch.Tensor:
bounding_boxes = _convert_bounding_box_format(
bounding_boxes, new_format=tv_tensors.BoundingBoxFormat.XYXY, old_format=format
)
image_h, image_w = canvas_size
ws, hs = bounding_boxes[:, 2] - bounding_boxes[:, 0], bounding_boxes[:, 3] - bounding_boxes[:, 1]
valid = (ws >= min_size) & (hs >= min_size) & (bounding_boxes >= 0).all(dim=-1)
# TODO: Do we really need to check for out of bounds here? All
# transforms should be clamping anyway, so this should never happen?
image_h, image_w = canvas_size
valid &= (bounding_boxes[:, 0] <= image_w) & (bounding_boxes[:, 2] <= image_w)
valid &= (bounding_boxes[:, 1] <= image_h) & (bounding_boxes[:, 3] <= image_h)
return valid
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment