Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
4d247b08
Commit
4d247b08
authored
Nov 21, 2016
by
soumith
Browse files
adding marat's bench script
parent
9bbfa1c3
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
50 additions
and
0 deletions
+50
-0
test/preprocess-bench.py
test/preprocess-bench.py
+50
-0
No files found.
test/preprocess-bench.py
0 → 100644
View file @
4d247b08
import
argparse
import
os
from
timeit
import
default_timer
as
timer
from
tqdm
import
tqdm
import
torch
import
torch.utils.data
import
torchvision.transforms
as
transforms
import
torchvision.datasets
as
datasets
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch ImageNet Training'
)
parser
.
add_argument
(
'--data'
,
metavar
=
'PATH'
,
required
=
True
,
help
=
'path to dataset'
)
parser
.
add_argument
(
'--nThreads'
,
'-j'
,
default
=
2
,
type
=
int
,
metavar
=
'N'
,
help
=
'number of data loading threads (default: 2)'
)
parser
.
add_argument
(
'--batchSize'
,
'-b'
,
default
=
256
,
type
=
int
,
metavar
=
'N'
,
help
=
'mini-batch size (1 = pure stochastic) Default: 256'
)
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
# Data loading code
transform
=
transforms
.
Compose
([
transforms
.
RandomSizedCrop
(
224
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
ToTensor
(),
transforms
.
Normalize
(
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
]),
])
traindir
=
os
.
path
.
join
(
args
.
data
,
'train'
)
valdir
=
os
.
path
.
join
(
args
.
data
,
'val'
)
train
=
datasets
.
ImageFolder
(
traindir
,
transform
)
val
=
datasets
.
ImageFolder
(
valdir
,
transform
)
train_loader
=
torch
.
utils
.
data
.
DataLoader
(
train
,
batch_size
=
args
.
batchSize
,
shuffle
=
True
,
num_workers
=
args
.
nThreads
)
train_iter
=
iter
(
train_loader
)
start_time
=
timer
()
batch_count
=
100
*
args
.
nThreads
for
i
in
tqdm
(
xrange
(
batch_count
)):
batch
=
next
(
train_iter
)
end_time
=
timer
()
print
(
"Performance: {dataset:.0f} minutes/dataset, {batch:.2f} secs/batch, {image:.2f} ms/image"
.
format
(
dataset
=
(
end_time
-
start_time
)
*
len
(
train_loader
)
/
(
batch_count
*
args
.
batchSize
)
/
60.0
,
batch
=
(
end_time
-
start_time
)
/
float
(
batch_count
),
image
=
(
end_time
-
start_time
)
/
(
batch_count
*
args
.
batchSize
)
*
1.0e+3
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment