Unverified Commit 4433a5b2 authored by vfdev's avatar vfdev Committed by GitHub
Browse files

Minor docs improvement (#2403)

* Minor docs improvement

* Replaced link by already defined `filters`_
parent 9b804659
......@@ -311,7 +311,7 @@ def normalize(tensor, mean, std, inplace=False):
return tensor
def resize(img: Tensor, size: List[int], interpolation: int = 2) -> Tensor:
def resize(img: Tensor, size: List[int], interpolation: int = Image.BILINEAR) -> Tensor:
r"""Resize the input image to the given size.
The image can be a PIL Image or a torch Tensor, in which case it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
......@@ -325,7 +325,9 @@ def resize(img: Tensor, size: List[int], interpolation: int = 2) -> Tensor:
:math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
In torchscript mode padding as single int is not supported, use a tuple or
list of length 1: ``[size, ]``.
interpolation (int, optional): Desired interpolation. Default is bilinear.
interpolation (int, optional): Desired interpolation enum defined by `filters`_.
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
and ``PIL.Image.BICUBIC`` are supported.
Returns:
PIL Image or Tensor: Resized image.
......@@ -455,7 +457,9 @@ def resized_crop(
height (int): Height of the crop box.
width (int): Width of the crop box.
size (sequence or int): Desired output size. Same semantics as ``resize``.
interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR``.
interpolation (int, optional): Desired interpolation enum defined by `filters`_.
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
and ``PIL.Image.BICUBIC`` are supported.
Returns:
PIL Image or Tensor: Cropped image.
"""
......
......@@ -222,7 +222,9 @@ class Resize(torch.nn.Module):
(size * height / width, size).
In torchscript mode padding as single int is not supported, use a tuple or
list of length 1: ``[size, ]``.
interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR``
interpolation (int, optional): Desired interpolation enum defined by `filters`_.
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
and ``PIL.Image.BICUBIC`` are supported.
"""
def __init__(self, size, interpolation=Image.BILINEAR):
......@@ -703,7 +705,9 @@ class RandomResizedCrop(torch.nn.Module):
made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
scale (tuple of float): range of size of the origin size cropped
ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
interpolation (int): Desired interpolation. Default: ``PIL.Image.BILINEAR``
interpolation (int): Desired interpolation enum defined by `filters`_.
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
and ``PIL.Image.BICUBIC`` are supported.
"""
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment