Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
4125d3a0
Unverified
Commit
4125d3a0
authored
May 24, 2023
by
Philip Meier
Committed by
GitHub
May 24, 2023
Browse files
kill CircleCI (#7611)
parent
285500d6
Changes
40
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
0 additions
and
1034 deletions
+0
-1034
.circleci/.gitignore
.circleci/.gitignore
+0
-1
.circleci/build_docs/commit_docs.sh
.circleci/build_docs/commit_docs.sh
+0
-35
.circleci/config.yml
.circleci/config.yml
+0
-271
.circleci/config.yml.in
.circleci/config.yml.in
+0
-251
.circleci/regenerate.py
.circleci/regenerate.py
+0
-58
.circleci/smoke_test/docker/Dockerfile
.circleci/smoke_test/docker/Dockerfile
+0
-34
.circleci/unittest/android/scripts/binary_android_build.sh
.circleci/unittest/android/scripts/binary_android_build.sh
+0
-27
.circleci/unittest/android/scripts/binary_android_upload.sh
.circleci/unittest/android/scripts/binary_android_upload.sh
+0
-34
.circleci/unittest/android/scripts/install_gradle.sh
.circleci/unittest/android/scripts/install_gradle.sh
+0
-19
.circleci/unittest/ios/scripts/binary_ios_build.sh
.circleci/unittest/ios/scripts/binary_ios_build.sh
+0
-47
.circleci/unittest/ios/scripts/binary_ios_upload.sh
.circleci/unittest/ios/scripts/binary_ios_upload.sh
+0
-42
.circleci/unittest/linux/scripts/environment.yml
.circleci/unittest/linux/scripts/environment.yml
+0
-16
.circleci/unittest/linux/scripts/install.sh
.circleci/unittest/linux/scripts/install.sh
+0
-45
.circleci/unittest/linux/scripts/post_process.sh
.circleci/unittest/linux/scripts/post_process.sh
+0
-6
.circleci/unittest/linux/scripts/run_test.sh
.circleci/unittest/linux/scripts/run_test.sh
+0
-22
.circleci/unittest/linux/scripts/setup_env.sh
.circleci/unittest/linux/scripts/setup_env.sh
+0
-47
.circleci/unittest/windows/scripts/environment.yml
.circleci/unittest/windows/scripts/environment.yml
+0
-19
.circleci/unittest/windows/scripts/install.sh
.circleci/unittest/windows/scripts/install.sh
+0
-53
.circleci/unittest/windows/scripts/install_conda.bat
.circleci/unittest/windows/scripts/install_conda.bat
+0
-1
.circleci/unittest/windows/scripts/post_process.sh
.circleci/unittest/windows/scripts/post_process.sh
+0
-6
No files found.
.circleci/.gitignore
deleted
100644 → 0
View file @
285500d6
.idea
.circleci/build_docs/commit_docs.sh
deleted
100755 → 0
View file @
285500d6
#!/usr/bin/env bash
set
-ex
if
[
"
$2
"
==
""
]
;
then
echo
call as
"
$0
"
"<src>"
"<target branch>"
echo
where src is the root of the built documentation git checkout and
echo
branch should be
"main"
or
"1.7"
or so
exit
1
fi
src
=
$1
target
=
$2
echo
"committing docs from
${
src
}
to
${
target
}
"
pushd
"
${
src
}
"
git checkout gh-pages
mkdir
-p
./
"
${
target
}
"
rm
-rf
./
"
${
target
}
"
/
*
cp
-r
"
${
src
}
/docs/build/html/"
*
./
"
$target
"
if
[
"
${
target
}
"
==
"main"
]
;
then
mkdir
-p
./_static
rm
-rf
./_static/
*
cp
-r
"
${
src
}
/docs/build/html/_static/"
*
./_static
git add
--all
./_static
||
true
fi
git add
--all
./
"
${
target
}
"
||
true
git config user.email
"soumith+bot@pytorch.org"
git config user.name
"pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit
-m
"auto-generating sphinx docs"
||
true
git remote add https https://github.com/pytorch/vision.git
git push
-u
https gh-pages
.circleci/config.yml
deleted
100644 → 0
View file @
285500d6
version
:
2.1
# How to test the Linux jobs:
# - Install CircleCI local CLI: https://circleci.com/docs/2.0/local-cli/
# - circleci config process .circleci/config.yml > gen.yml && circleci local execute -c gen.yml --job binary_win_wheel_py3.8
# - Replace binary_win_wheel_py3.8 with the name of the job you want to test.
# Job names are 'name:' key.
executors
:
windows-cpu
:
machine
:
resource_class
:
windows.xlarge
image
:
windows-server-2019-vs2019:stable
shell
:
bash.exe
windows-gpu
:
machine
:
resource_class
:
windows.gpu.nvidia.medium
image
:
windows-server-2019-nvidia:stable
shell
:
bash.exe
commands
:
checkout_merge
:
description
:
"
checkout
merge
branch"
steps
:
-
checkout
# - run:
# name: Checkout merge branch
# command: |
# set -ex
# BRANCH=$(git rev-parse --abbrev-ref HEAD)
# if [[ "$BRANCH" != "main" ]]; then
# git fetch --force origin ${CIRCLE_BRANCH}/merge:merged/${CIRCLE_BRANCH}
# git checkout "merged/$CIRCLE_BRANCH"
# fi
designate_upload_channel
:
description
:
"
inserts
the
correct
upload
channel
into
${BASH_ENV}"
steps
:
-
run
:
name
:
adding UPLOAD_CHANNEL to BASH_ENV
command
:
|
our_upload_channel=nightly
# On tags upload to test instead
if [[ -n "${CIRCLE_TAG}" ]]; then
our_upload_channel=test
fi
echo "export UPLOAD_CHANNEL=${our_upload_channel}" >> ${BASH_ENV}
pip_install
:
parameters
:
args
:
type
:
string
descr
:
type
:
string
default
:
"
"
user
:
type
:
boolean
default
:
true
steps
:
-
run
:
name
:
>
<<^ parameters.descr >> pip install << parameters.args >> <</ parameters.descr >>
<<# parameters.descr >> << parameters.descr >> <</ parameters.descr >>
command
:
>
pip install
<<# parameters.user >> --user <</ parameters.user >>
--progress-bar=off
<< parameters.args >>
binary_common
:
&binary_common
parameters
:
# Edit these defaults to do a release
build_version
:
description
:
"
version
number
of
release
binary;
by
default,
build
a
nightly"
type
:
string
default
:
"
"
pytorch_version
:
description
:
"
PyTorch
version
to
build
against;
by
default,
use
a
nightly"
type
:
string
default
:
"
"
# Don't edit these
python_version
:
description
:
"
Python
version
to
build
against
(e.g.,
3.8)"
type
:
string
cu_version
:
description
:
"
CUDA
version
to
build
against,
in
CU
format
(e.g.,
cpu
or
cu100)"
type
:
string
default
:
"
cpu"
unicode_abi
:
description
:
"
Python
2.7
wheel
only:
whether
or
not
we
are
cp27mu
(default:
no)"
type
:
string
default
:
"
"
wheel_docker_image
:
description
:
"
Wheel
only:
what
docker
image
to
use"
type
:
string
default
:
"
"
conda_docker_image
:
description
:
"
Conda
only:
what
docker
image
to
use"
type
:
string
default
:
"
pytorch/conda-builder:cpu"
environment
:
PYTHON_VERSION
:
<< parameters.python_version >>
PYTORCH_VERSION
:
<< parameters.pytorch_version >>
UNICODE_ABI
:
<< parameters.unicode_abi >>
CU_VERSION
:
<< parameters.cu_version >>
MACOSX_DEPLOYMENT_TARGET
:
10.9
smoke_test_common
:
&smoke_test_common
<<
:
*binary_common
docker
:
-
image
:
torchvision/smoke_test:latest
jobs
:
circleci_consistency
:
docker
:
-
image
:
cimg/python:3.8
steps
:
-
checkout
-
pip_install
:
args
:
jinja2 pyyaml
-
run
:
name
:
Check CircleCI config consistency
command
:
|
python .circleci/regenerate.py
git diff --exit-code || (echo ".circleci/config.yml not in sync with config.yml.in! Run .circleci/regenerate.py to update config"; exit 1)
smoke_test_docker_image_build
:
machine
:
image
:
ubuntu-2004:202104-01
resource_class
:
large
environment
:
image_name
:
torchvision/smoke_test
steps
:
-
checkout
-
designate_upload_channel
-
run
:
name
:
Build and push Docker image
no_output_timeout
:
"
1h"
command
:
|
set +x
echo "${DOCKER_HUB_TOKEN}" | docker login --username "${DOCKER_HUB_USERNAME}" --password-stdin
set -x
cd .circleci/smoke_test/docker && docker build . -t ${image_name}:${CIRCLE_WORKFLOW_ID}
docker tag ${image_name}:${CIRCLE_WORKFLOW_ID} ${image_name}:latest
docker push ${image_name}:${CIRCLE_WORKFLOW_ID}
docker push ${image_name}:latest
cmake_linux_cpu
:
<<
:
*binary_common
docker
:
-
image
:
"
pytorch/manylinux-cpu"
resource_class
:
2xlarge+
steps
:
-
checkout_merge
-
designate_upload_channel
-
run
:
name
:
Setup conda
command
:
.circleci/unittest/linux/scripts/setup_env.sh
-
run
:
packaging/build_cmake.sh
cmake_linux_gpu
:
<<
:
*binary_common
machine
:
image
:
ubuntu-2004-cuda-11.4:202110-01
resource_class
:
gpu.nvidia.small
steps
:
-
checkout_merge
-
designate_upload_channel
-
run
:
name
:
Setup conda
command
:
docker run -e CU_VERSION -e PYTHON_VERSION -e UNICODE_ABI -e PYTORCH_VERSION -t --gpus all -v $PWD:$PWD -w $PWD << parameters.wheel_docker_image >> .circleci/unittest/linux/scripts/setup_env.sh
-
run
:
name
:
Build torchvision C++ distribution and test
no_output_timeout
:
30m
command
:
docker run -e CU_VERSION -e PYTHON_VERSION -e UNICODE_ABI -e PYTORCH_VERSION -e UPLOAD_CHANNEL -t --gpus all -v $PWD:$PWD -w $PWD << parameters.wheel_docker_image >> packaging/build_cmake.sh
cmake_macos_cpu
:
<<
:
*binary_common
macos
:
xcode
:
"
14.0"
steps
:
-
checkout_merge
-
designate_upload_channel
-
run
:
command
:
|
curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh conda.sh -b
source $HOME/miniconda3/bin/activate
conda install -yq conda-build cmake python=<< parameters.python_version >>
packaging/build_cmake.sh
cmake_windows_cpu
:
<<
:
*binary_common
executor
:
name
:
windows-cpu
steps
:
-
checkout_merge
-
designate_upload_channel
-
run
:
command
:
|
set -ex
source packaging/windows/internal/vc_install_helper.sh
eval "$('/C/tools/miniconda3/Scripts/conda.exe' 'shell.bash' 'hook')"
conda activate base
conda create -yn python39 python=3.9
conda activate python39
packaging/build_cmake.sh
cmake_windows_gpu
:
<<
:
*binary_common
executor
:
name
:
windows-gpu
steps
:
-
checkout_merge
-
designate_upload_channel
-
run
:
name
:
Update CUDA driver
command
:
packaging/windows/internal/driver_update.bat
-
run
:
command
:
|
set -ex
source packaging/windows/internal/vc_install_helper.sh
packaging/windows/internal/cuda_install.bat
eval "$('/C/tools/miniconda3/Scripts/conda.exe' 'shell.bash' 'hook')"
conda activate
conda update -y conda
conda create -yn python39 python=3.9
conda activate python39
packaging/build_cmake.sh
workflows
:
lint
:
jobs
:
-
circleci_consistency
cmake
:
jobs
:
-
cmake_linux_cpu
:
cu_version
:
cpu
name
:
cmake_linux_cpu
python_version
:
'
3.8'
-
cmake_linux_gpu
:
cu_version
:
cu117
name
:
cmake_linux_gpu
python_version
:
'
3.8'
wheel_docker_image
:
pytorch/manylinux-cuda117
-
cmake_windows_cpu
:
cu_version
:
cpu
name
:
cmake_windows_cpu
python_version
:
'
3.8'
-
cmake_windows_gpu
:
cu_version
:
cu117
name
:
cmake_windows_gpu
python_version
:
'
3.8'
-
cmake_macos_cpu
:
cu_version
:
cpu
name
:
cmake_macos_cpu
python_version
:
'
3.8'
docker_build
:
triggers
:
-
schedule
:
cron
:
"
0
10
*
*
0"
filters
:
branches
:
only
:
-
main
jobs
:
-
smoke_test_docker_image_build
:
context
:
org-member
.circleci/config.yml.in
deleted
100644 → 0
View file @
285500d6
version: 2.1
# How to test the Linux jobs:
# - Install CircleCI local CLI: https://circleci.com/docs/2.0/local-cli/
# - circleci config process .circleci/config.yml > gen.yml && circleci local execute -c gen.yml --job binary_win_wheel_py3.8
# - Replace binary_win_wheel_py3.8 with the name of the job you want to test.
# Job names are 'name:' key.
executors:
windows-cpu:
machine:
resource_class: windows.xlarge
image: windows-server-2019-vs2019:stable
shell: bash.exe
windows-gpu:
machine:
resource_class: windows.gpu.nvidia.medium
image: windows-server-2019-nvidia:stable
shell: bash.exe
commands:
checkout_merge:
description: "checkout merge branch"
steps:
- checkout
# - run:
# name: Checkout merge branch
# command: |
# set -ex
# BRANCH=$(git rev-parse --abbrev-ref HEAD)
# if [[ "$BRANCH" != "main" ]]; then
# git fetch --force origin ${CIRCLE_BRANCH}/merge:merged/${CIRCLE_BRANCH}
# git checkout "merged/$CIRCLE_BRANCH"
# fi
designate_upload_channel:
description: "inserts the correct upload channel into ${BASH_ENV}"
steps:
- run:
name: adding UPLOAD_CHANNEL to BASH_ENV
command: |
our_upload_channel=nightly
# On tags upload to test instead
if [[ -n "${CIRCLE_TAG}" ]]; then
our_upload_channel=test
fi
echo "export UPLOAD_CHANNEL=${our_upload_channel}" >> ${BASH_ENV}
pip_install:
parameters:
args:
type: string
descr:
type: string
default: ""
user:
type: boolean
default: true
steps:
- run:
name: >
<<^ parameters.descr >> pip install << parameters.args >> <</ parameters.descr >>
<<# parameters.descr >> << parameters.descr >> <</ parameters.descr >>
command: >
pip install
<<# parameters.user >> --user <</ parameters.user >>
--progress-bar=off
<< parameters.args >>
binary_common: &binary_common
parameters:
# Edit these defaults to do a release
build_version:
description: "version number of release binary; by default, build a nightly"
type: string
default: ""
pytorch_version:
description: "PyTorch version to build against; by default, use a nightly"
type: string
default: ""
# Don't edit these
python_version:
description: "Python version to build against (e.g., 3.8)"
type: string
cu_version:
description: "CUDA version to build against, in CU format (e.g., cpu or cu100)"
type: string
default: "cpu"
unicode_abi:
description: "Python 2.7 wheel only: whether or not we are cp27mu (default: no)"
type: string
default: ""
wheel_docker_image:
description: "Wheel only: what docker image to use"
type: string
default: ""
conda_docker_image:
description: "Conda only: what docker image to use"
type: string
default: "pytorch/conda-builder:cpu"
environment:
PYTHON_VERSION: << parameters.python_version >>
PYTORCH_VERSION: << parameters.pytorch_version >>
UNICODE_ABI: << parameters.unicode_abi >>
CU_VERSION: << parameters.cu_version >>
MACOSX_DEPLOYMENT_TARGET: 10.9
smoke_test_common: &smoke_test_common
<<: *binary_common
docker:
- image: torchvision/smoke_test:latest
jobs:
circleci_consistency:
docker:
- image: cimg/python:3.8
steps:
- checkout
- pip_install:
args: jinja2 pyyaml
- run:
name: Check CircleCI config consistency
command: |
python .circleci/regenerate.py
git diff --exit-code || (echo ".circleci/config.yml not in sync with config.yml.in! Run .circleci/regenerate.py to update config"; exit 1)
smoke_test_docker_image_build:
machine:
image: ubuntu-2004:202104-01
resource_class: large
environment:
image_name: torchvision/smoke_test
steps:
- checkout
- designate_upload_channel
- run:
name: Build and push Docker image
no_output_timeout: "1h"
command: |
set +x
echo "${DOCKER_HUB_TOKEN}" | docker login --username "${DOCKER_HUB_USERNAME}" --password-stdin
set -x
cd .circleci/smoke_test/docker && docker build . -t ${image_name}:${CIRCLE_WORKFLOW_ID}
docker tag ${image_name}:${CIRCLE_WORKFLOW_ID} ${image_name}:latest
docker push ${image_name}:${CIRCLE_WORKFLOW_ID}
docker push ${image_name}:latest
cmake_linux_cpu:
<<: *binary_common
docker:
- image: "pytorch/manylinux-cpu"
resource_class: 2xlarge+
steps:
- checkout_merge
- designate_upload_channel
- run:
name: Setup conda
command: .circleci/unittest/linux/scripts/setup_env.sh
- run: packaging/build_cmake.sh
cmake_linux_gpu:
<<: *binary_common
machine:
image: ubuntu-2004-cuda-11.4:202110-01
resource_class: gpu.nvidia.small
steps:
- checkout_merge
- designate_upload_channel
- run:
name: Setup conda
command: docker run -e CU_VERSION -e PYTHON_VERSION -e UNICODE_ABI -e PYTORCH_VERSION -t --gpus all -v $PWD:$PWD -w $PWD << parameters.wheel_docker_image >> .circleci/unittest/linux/scripts/setup_env.sh
- run:
name: Build torchvision C++ distribution and test
no_output_timeout: 30m
command: docker run -e CU_VERSION -e PYTHON_VERSION -e UNICODE_ABI -e PYTORCH_VERSION -e UPLOAD_CHANNEL -t --gpus all -v $PWD:$PWD -w $PWD << parameters.wheel_docker_image >> packaging/build_cmake.sh
cmake_macos_cpu:
<<: *binary_common
macos:
xcode: "14.0"
steps:
- checkout_merge
- designate_upload_channel
- run:
command: |
curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh conda.sh -b
source $HOME/miniconda3/bin/activate
conda install -yq conda-build cmake python=<< parameters.python_version >>
packaging/build_cmake.sh
cmake_windows_cpu:
<<: *binary_common
executor:
name: windows-cpu
steps:
- checkout_merge
- designate_upload_channel
- run:
command: |
set -ex
source packaging/windows/internal/vc_install_helper.sh
eval "$('/C/tools/miniconda3/Scripts/conda.exe' 'shell.bash' 'hook')"
conda activate base
conda create -yn python39 python=3.9
conda activate python39
packaging/build_cmake.sh
cmake_windows_gpu:
<<: *binary_common
executor:
name: windows-gpu
steps:
- checkout_merge
- designate_upload_channel
- run:
name: Update CUDA driver
command: packaging/windows/internal/driver_update.bat
- run:
command: |
set -ex
source packaging/windows/internal/vc_install_helper.sh
packaging/windows/internal/cuda_install.bat
eval "$('/C/tools/miniconda3/Scripts/conda.exe' 'shell.bash' 'hook')"
conda activate
conda update -y conda
conda create -yn python39 python=3.9
conda activate python39
packaging/build_cmake.sh
workflows:
lint:
jobs:
- circleci_consistency
cmake:
jobs:
{{ cmake_workflows() }}
docker_build:
triggers:
- schedule:
cron: "0 10 * * 0"
filters:
branches:
only:
- main
jobs:
- smoke_test_docker_image_build:
context: org-member
.circleci/regenerate.py
deleted
100755 → 0
View file @
285500d6
#!/usr/bin/env python3
"""
This script should use a very simple, functional programming style.
Avoid Jinja macros in favor of native Python functions.
Don't go overboard on code generation; use Python only to generate
content that can't be easily declared statically using CircleCI's YAML API.
Data declarations (e.g. the nested loops for defining the configuration matrix)
should be at the top of the file for easy updating.
See this comment for design rationale:
https://github.com/pytorch/vision/pull/1321#issuecomment-531033978
"""
import
os.path
import
jinja2
import
yaml
from
jinja2
import
select_autoescape
def
indent
(
indentation
,
data_list
):
return
(
"
\n
"
+
" "
*
indentation
).
join
(
yaml
.
dump
(
data_list
,
default_flow_style
=
False
).
splitlines
())
def
cmake_workflows
(
indentation
=
6
):
jobs
=
[]
python_version
=
"3.8"
for
os_type
in
[
"linux"
,
"windows"
,
"macos"
]:
# Skip OSX CUDA
device_types
=
[
"cpu"
,
"gpu"
]
if
os_type
!=
"macos"
else
[
"cpu"
]
for
device
in
device_types
:
job
=
{
"name"
:
f
"cmake_
{
os_type
}
_
{
device
}
"
,
"python_version"
:
python_version
}
job
[
"cu_version"
]
=
"cu117"
if
device
==
"gpu"
else
"cpu"
if
device
==
"gpu"
and
os_type
==
"linux"
:
job
[
"wheel_docker_image"
]
=
"pytorch/manylinux-cuda117"
jobs
.
append
({
f
"cmake_
{
os_type
}
_
{
device
}
"
:
job
})
return
indent
(
indentation
,
jobs
)
if
__name__
==
"__main__"
:
d
=
os
.
path
.
dirname
(
__file__
)
env
=
jinja2
.
Environment
(
loader
=
jinja2
.
FileSystemLoader
(
d
),
lstrip_blocks
=
True
,
autoescape
=
select_autoescape
(
enabled_extensions
=
(
"html"
,
"xml"
)),
keep_trailing_newline
=
True
,
)
with
open
(
os
.
path
.
join
(
d
,
"config.yml"
),
"w"
)
as
f
:
f
.
write
(
env
.
get_template
(
"config.yml.in"
).
render
(
cmake_workflows
=
cmake_workflows
,
)
)
.circleci/smoke_test/docker/Dockerfile
deleted
100644 → 0
View file @
285500d6
# this Dockerfile is for torchvision smoke test, it will be created periodically via CI system
# if you need to do it locally, follow below steps once you have Docker installed
# assuming you're within the directory where this Dockerfile located
# $ docker build . -t torchvision/smoketest
# if you want to push to aws ecr, make sure you have the rights to write to ECR, then run
# $ eval $(aws ecr get-login --region us-east-1 --no-include-email)
# $ export MYTAG=localbuild ## you can choose whatever tag you like
# $ docker tag torchvision/smoketest 308535385114.dkr.ecr.us-east-1.amazonaws.com/torchvision/smoke_test:${MYTAG}
# $ docker push 308535385114.dkr.ecr.us-east-1.amazonaws.com/torchvision/smoke_test:${MYTAG}
FROM
ubuntu:latest
RUN
apt-get
-qq
update
&&
apt-get
-qq
-y
install
curl bzip2 libsox-fmt-all
\
&&
curl
-sSL
https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
-o
/tmp/miniconda.sh
\
&&
bash /tmp/miniconda.sh
-bfp
/usr/local
\
&&
rm
-rf
/tmp/miniconda.sh
\
&&
conda
install
-y
python
=
3
\
&&
conda update conda
\
&&
apt-get
-qq
-y
remove curl bzip2
\
&&
apt-get
-qq
-y
autoremove
\
&&
apt-get autoclean
\
&&
rm
-rf
/var/lib/apt/lists/
*
/var/log/dpkg.log
\
&&
conda clean
--all
--yes
ENV
PATH /opt/conda/bin:$PATH
RUN
conda create
-y
--name
python3.7
python
=
3.7
RUN
conda create
-y
--name
python3.8
python
=
3.8
RUN
conda create
-y
--name
python3.9
python
=
3.9
RUN
conda create
-y
--name
python3.10
python
=
3.10
SHELL
[ "/bin/bash", "-c" ]
RUN
echo
"source /usr/local/etc/profile.d/conda.sh"
>>
~/.bashrc
CMD
[ "/bin/bash"]
.circleci/unittest/android/scripts/binary_android_build.sh
deleted
100644 → 0
View file @
285500d6
#!/bin/bash
set
-ex
-o
pipefail
echo
"DIR:
$(
pwd
)
"
echo
"ANDROID_HOME=
${
ANDROID_HOME
}
"
echo
"ANDROID_NDK_HOME=
${
ANDROID_NDK_HOME
}
"
echo
"JAVA_HOME=
${
JAVA_HOME
}
"
WORKSPACE
=
/home/circleci/workspace
VISION_ANDROID
=
/home/circleci/project/android
.
/home/circleci/project/.circleci/unittest/android/scripts/install_gradle.sh
GRADLE_LOCAL_PROPERTIES
=
${
VISION_ANDROID
}
/local.properties
rm
-f
$GRADLE_LOCAL_PROPERTIES
echo
"sdk.dir=
${
ANDROID_HOME
}
"
>>
$GRADLE_LOCAL_PROPERTIES
echo
"ndk.dir=
${
ANDROID_NDK_HOME
}
"
>>
$GRADLE_LOCAL_PROPERTIES
echo
"GRADLE_PATH
$GRADLE_PATH
"
echo
"GRADLE_HOME
$GRADLE_HOME
"
${
GRADLE_PATH
}
--scan
--stacktrace
--debug
--no-daemon
-p
${
VISION_ANDROID
}
assemble
||
true
mkdir
-p
~/workspace/artifacts
find
.
-type
f
-name
*
aar
-print
| xargs
tar
cfvz ~/workspace/artifacts/artifacts-aars.tgz
find
.
-type
f
-name
*
apk
-print
| xargs
tar
cfvz ~/workspace/artifacts/artifacts-apks.tgz
.circleci/unittest/android/scripts/binary_android_upload.sh
deleted
100644 → 0
View file @
285500d6
#!/bin/bash
set
-ex
-o
pipefail
echo
"DIR:
$(
pwd
)
"
echo
"ANDROID_HOME=
${
ANDROID_HOME
}
"
echo
"ANDROID_NDK_HOME=
${
ANDROID_NDK_HOME
}
"
echo
"JAVA_HOME=
${
JAVA_HOME
}
"
WORKSPACE
=
/home/circleci/workspace
VISION_ANDROID
=
/home/circleci/project/android
.
/home/circleci/project/.circleci/unittest/android/scripts/install_gradle.sh
GRADLE_LOCAL_PROPERTIES
=
${
VISION_ANDROID
}
/local.properties
rm
-f
$GRADLE_LOCAL_PROPERTIES
GRADLE_PROPERTIES
=
/home/circleci/project/android/gradle.properties
echo
"sdk.dir=
${
ANDROID_HOME
}
"
>>
$GRADLE_LOCAL_PROPERTIES
echo
"ndk.dir=
${
ANDROID_NDK_HOME
}
"
>>
$GRADLE_LOCAL_PROPERTIES
echo
"SONATYPE_NEXUS_USERNAME=
${
SONATYPE_NEXUS_USERNAME
}
"
>>
$GRADLE_PROPERTIES
echo
"mavenCentralRepositoryUsername=
${
SONATYPE_NEXUS_USERNAME
}
"
>>
$GRADLE_PROPERTIES
echo
"SONATYPE_NEXUS_PASSWORD=
${
SONATYPE_NEXUS_PASSWORD
}
"
>>
$GRADLE_PROPERTIES
echo
"mavenCentralRepositoryPassword=
${
SONATYPE_NEXUS_PASSWORD
}
"
>>
$GRADLE_PROPERTIES
echo
"signing.keyId=
${
ANDROID_SIGN_KEY
}
"
>>
$GRADLE_PROPERTIES
echo
"signing.password=
${
ANDROID_SIGN_PASS
}
"
>>
$GRADLE_PROPERTIES
cat
/home/circleci/project/android/gradle.properties |
grep
VERSION
${
GRADLE_PATH
}
--scan
--stacktrace
--debug
--no-daemon
-p
${
VISION_ANDROID
}
ops:uploadArchives
mkdir
-p
~/workspace/artifacts
find
.
-type
f
-name
*
aar
-print
| xargs
tar
cfvz ~/workspace/artifacts/artifacts-aars.tgz
.circleci/unittest/android/scripts/install_gradle.sh
deleted
100755 → 0
View file @
285500d6
#!/bin/bash
set
-ex
_https_amazon_aws
=
https://downloads.gradle-dn.com/distributions
GRADLE_VERSION
=
6.8.3
_gradle_home
=
/opt/gradle
sudo rm
-rf
$gradle_home
sudo mkdir
-p
$_gradle_home
curl
--silent
--output
/tmp/gradle.zip
--retry
3
$_https_amazon_aws
/gradle-
${
GRADLE_VERSION
}
-bin
.zip
sudo
unzip
-q
/tmp/gradle.zip
-d
$_gradle_home
rm
/tmp/gradle.zip
sudo chmod
-R
777
$_gradle_home
export
GRADLE_HOME
=
$_gradle_home
/gradle-
$GRADLE_VERSION
export
GRADLE_PATH
=
${
GRADLE_HOME
}
/bin/gradle
.circleci/unittest/ios/scripts/binary_ios_build.sh
deleted
100755 → 0
View file @
285500d6
#!/bin/bash
set
-ex
-o
pipefail
echo
""
echo
"DIR:
$(
pwd
)
"
WORKSPACE
=
/Users/distiller/workspace
PROJ_ROOT_IOS
=
/Users/distiller/project/ios
PYTORCH_IOS_NIGHTLY_NAME
=
libtorch_ios_nightly_build.zip
export
TCLLIBPATH
=
"/usr/local/lib"
# install conda
curl
--retry
3
-o
~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod
+x ~/conda.sh
/bin/bash ~/conda.sh
-b
-p
~/anaconda
export
PATH
=
"~/anaconda/bin:
${
PATH
}
"
source
~/anaconda/bin/activate
# install dependencies
conda
install
numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests wget
--yes
conda
install
-c
conda-forge valgrind
--yes
export
CMAKE_PREFIX_PATH
=
${
CONDA_PREFIX
:-
"
$(
dirname
$(
which conda
))
/../"
}
# sync submodules
cd
${
PROJ_ROOT_IOS
}
git submodule
sync
git submodule update
--init
--recursive
# download pytorch-iOS nightly build and unzip it
mkdir
-p
${
PROJ_ROOT_IOS
}
/lib
mkdir
-p
${
PROJ_ROOT_IOS
}
/build
mkdir
-p
${
PROJ_ROOT_IOS
}
/pytorch
TORCH_ROOT
=
"
${
PROJ_ROOT_IOS
}
/pytorch"
cd
${
TORCH_ROOT
}
wget https://ossci-ios-build.s3.amazonaws.com/
${
PYTORCH_IOS_NIGHTLY_NAME
}
mkdir
-p
./build_ios
unzip
-d
./build_ios ./
${
PYTORCH_IOS_NIGHTLY_NAME
}
LIBTORCH_HEADER_ROOT
=
"
${
TORCH_ROOT
}
/build_ios/install/include"
cd
${
PROJ_ROOT_IOS
}
IOS_ARCH
=
${
IOS_ARCH
}
LIBTORCH_HEADER_ROOT
=
${
LIBTORCH_HEADER_ROOT
}
./build_ios.sh
rm
-rf
${
TORCH_ROOT
}
# store the binary
DEST_DIR
=
${
WORKSPACE
}
/ios/
${
IOS_ARCH
}
mkdir
-p
${
DEST_DIR
}
cp
${
PROJ_ROOT_IOS
}
/lib/
*
.a
${
DEST_DIR
}
.circleci/unittest/ios/scripts/binary_ios_upload.sh
deleted
100644 → 0
View file @
285500d6
#!/bin/bash
set
-ex
-o
pipefail
echo
""
echo
"DIR:
$(
pwd
)
"
WORKSPACE
=
/Users/distiller/workspace
PROJ_ROOT
=
/Users/distiller/project
ARTIFACTS_DIR
=
${
WORKSPACE
}
/ios
ls
${
ARTIFACTS_DIR
}
ZIP_DIR
=
${
WORKSPACE
}
/zip
mkdir
-p
${
ZIP_DIR
}
/install/lib
# build a FAT bianry
cd
${
ZIP_DIR
}
/install/lib
libs
=(
"
${
ARTIFACTS_DIR
}
/x86_64/libtorchvision_ops.a"
"
${
ARTIFACTS_DIR
}
/arm64/libtorchvision_ops.a"
)
lipo
-create
"
${
libs
[@]
}
"
-o
${
ZIP_DIR
}
/install/lib/libtorchvision_ops.a
lipo
-i
${
ZIP_DIR
}
/install/lib/
*
.a
# copy the license
cp
${
PROJ_ROOT
}
/LICENSE
${
ZIP_DIR
}
/
# zip the library
ZIPFILE
=
libtorchvision_ops_ios_nightly_build.zip
cd
${
ZIP_DIR
}
#for testing
touch
version.txt
echo
$(
date
+%s
)
>
version.txt
zip
-r
${
ZIPFILE
}
install
version.txt LICENSE
# upload to aws
# Install conda then 'conda install' awscli
curl
--retry
3
-o
~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod
+x ~/conda.sh
/bin/bash ~/conda.sh
-b
-p
~/anaconda
export
PATH
=
"~/anaconda/bin:
${
PATH
}
"
source
~/anaconda/bin/activate
conda
install
-c
conda-forge awscli
--yes
set
+x
export
AWS_ACCESS_KEY_ID
=
${
AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD
}
export
AWS_SECRET_ACCESS_KEY
=
${
AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD
}
set
-x
aws s3
cp
${
ZIPFILE
}
s3://ossci-ios-build/
--acl
public-read
.circleci/unittest/linux/scripts/environment.yml
deleted
100644 → 0
View file @
285500d6
channels
:
-
pytorch
-
defaults
dependencies
:
-
pytest
-
pytest-cov
-
pytest-mock
-
pip
-
libpng
-
jpeg
-
ca-certificates
-
h5py
-
pip
:
-
future
-
scipy
-
av <
10
.circleci/unittest/linux/scripts/install.sh
deleted
100755 → 0
View file @
285500d6
#!/usr/bin/env bash
unset
PYTORCH_VERSION
# For unittest, nightly PyTorch is used as the following section,
# so no need to set PYTORCH_VERSION.
# In fact, keeping PYTORCH_VERSION forces us to hardcode PyTorch version in config.
set
-ex
eval
"
$(
./conda/bin/conda shell.bash hook
)
"
conda activate ./env
if
[
"
${
CU_VERSION
:-}
"
==
cpu
]
;
then
cudatoolkit
=
"cpuonly"
version
=
"cpu"
else
if
[[
${#
CU_VERSION
}
-eq
4
]]
;
then
CUDA_VERSION
=
"
${
CU_VERSION
:2:1
}
.
${
CU_VERSION
:3:1
}
"
elif
[[
${#
CU_VERSION
}
-eq
5
]]
;
then
CUDA_VERSION
=
"
${
CU_VERSION
:2:2
}
.
${
CU_VERSION
:4:1
}
"
fi
echo
"Using CUDA
$CUDA_VERSION
as determined by CU_VERSION:
${
CU_VERSION
}
"
version
=
"
$(
python
-c
"print('.'.join(
\"
${
CUDA_VERSION
}
\"
.split('.')[:2]))"
)
"
cudatoolkit
=
"pytorch-cuda=
${
version
}
"
# make sure local cuda is set to required cuda version and not CUDA version by default
rm
-f
/usr/local/cuda
ln
-s
/usr/local/cuda-
${
version
}
/usr/local/cuda
fi
case
"
$(
uname
-s
)
"
in
Darwin
*
)
os
=
MacOSX
;;
*
)
os
=
Linux
esac
printf
"Installing PyTorch with %s
\n
"
"
${
cudatoolkit
}
"
if
[
"
${
os
}
"
==
"MacOSX"
]
;
then
conda
install
-y
-c
"pytorch-
${
UPLOAD_CHANNEL
}
"
"pytorch-
${
UPLOAD_CHANNEL
}
"
::pytorch
"
${
cudatoolkit
}
"
else
conda
install
-y
-c
"pytorch-
${
UPLOAD_CHANNEL
}
"
-c
nvidia
"pytorch-
${
UPLOAD_CHANNEL
}
"
::pytorch[build
=
"*
${
version
}
*"
]
"
${
cudatoolkit
}
"
fi
printf
"* Installing torchvision
\n
"
python setup.py develop
.circleci/unittest/linux/scripts/post_process.sh
deleted
100755 → 0
View file @
285500d6
#!/usr/bin/env bash
set
-e
eval
"
$(
./conda/bin/conda shell.bash hook
)
"
conda activate ./env
.circleci/unittest/linux/scripts/run_test.sh
deleted
100755 → 0
View file @
285500d6
#!/usr/bin/env bash
set
-e
eval
"
$(
./conda/bin/conda shell.bash hook
)
"
conda activate ./env
python
-m
torch.utils.collect_env
case
"
$(
uname
-s
)
"
in
Darwin
*
)
# The largest macOS runner is not able to handle the regular test suite plus the transforms v2 tests at the same
# time due to insufficient resources. Thus, we ignore the transforms v2 tests at first and run them in a separate
# step afterwards.
GLOB
=
'test/test_transforms_v2*'
pytest
--junitxml
=
test-results/junit.xml
-v
--durations
20
--ignore-glob
=
"
${
GLOB
}
"
eval
"pytest --junitxml=test-results/junit-transforms-v2.xml -v --durations 20
${
GLOB
}
"
;;
*
)
pytest
--junitxml
=
test-results/junit.xml
-v
--durations
20
;;
esac
.circleci/unittest/linux/scripts/setup_env.sh
deleted
100755 → 0
View file @
285500d6
#!/usr/bin/env bash
# This script is for setting up environment in which unit test is ran.
# To speed up the CI time, the resulting environment is cached.
#
# Do not install PyTorch and torchvision here, otherwise they also get cached.
set
-ex
this_dir
=
"
$(
cd
"
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
"
>
/dev/null 2>&1
&&
pwd
)
"
# Avoid error: "fatal: unsafe repository"
git config
--global
--add
safe.directory
'*'
root_dir
=
"
$(
git rev-parse
--show-toplevel
)
"
conda_dir
=
"
${
root_dir
}
/conda"
env_dir
=
"
${
root_dir
}
/env"
cd
"
${
root_dir
}
"
case
"
$(
uname
-s
)
"
in
Darwin
*
)
os
=
MacOSX
;;
*
)
os
=
Linux
esac
# 1. Install conda at ./conda
if
[
!
-d
"
${
conda_dir
}
"
]
;
then
printf
"* Installing conda
\n
"
wget
-O
miniconda.sh
"http://repo.continuum.io/miniconda/Miniconda3-latest-
${
os
}
-x86_64.sh"
bash ./miniconda.sh
-b
-f
-p
"
${
conda_dir
}
"
fi
eval
"
$(
${
conda_dir
}
/bin/conda shell.bash hook
)
"
# 2. Create test environment at ./env
if
[
!
-d
"
${
env_dir
}
"
]
;
then
printf
"* Creating a test environment
\n
"
conda create
--prefix
"
${
env_dir
}
"
-y
python
=
"
$PYTHON_VERSION
"
fi
conda activate
"
${
env_dir
}
"
# 3. Install Conda dependencies
printf
"* Installing dependencies (except PyTorch)
\n
"
FFMPEG_PIN
=
"=4.2"
if
[[
"
${
PYTHON_VERSION
}
"
==
"3.9"
]]
;
then
FFMPEG_PIN
=
">=4.2"
fi
conda
install
-y
-c
pytorch
"ffmpeg
${
FFMPEG_PIN
}
"
conda
env
update
--file
"
${
this_dir
}
/environment.yml"
--prune
.circleci/unittest/windows/scripts/environment.yml
deleted
100644 → 0
View file @
285500d6
channels
:
-
pytorch
-
defaults
dependencies
:
-
pytest
-
pytest-cov
-
pytest-mock
-
pip
-
libpng
-
jpeg
-
ca-certificates
-
hdf5
-
setuptools
-
pip
:
-
future
-
scipy
-
av !=9.1.1, <10
-
dataclasses
-
h5py
.circleci/unittest/windows/scripts/install.sh
deleted
100644 → 0
View file @
285500d6
#!/usr/bin/env bash
unset
PYTORCH_VERSION
# For unittest, nightly PyTorch is used as the following section,
# so no need to set PYTORCH_VERSION.
# In fact, keeping PYTORCH_VERSION forces us to hardcode PyTorch version in config.
set
-ex
this_dir
=
"
$(
cd
"
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
"
>
/dev/null 2>&1
&&
pwd
)
"
eval
"
$(
./conda/Scripts/conda.exe
'shell.bash'
'hook'
)
"
conda activate ./env
# TODO, refactor the below logic to make it easy to understand how to get correct cuda_version.
if
[
"
${
CU_VERSION
:-}
"
==
cpu
]
;
then
cudatoolkit
=
"cpuonly"
version
=
"cpu"
else
if
[[
${#
CU_VERSION
}
-eq
4
]]
;
then
CUDA_VERSION
=
"
${
CU_VERSION
:2:1
}
.
${
CU_VERSION
:3:1
}
"
elif
[[
${#
CU_VERSION
}
-eq
5
]]
;
then
CUDA_VERSION
=
"
${
CU_VERSION
:2:2
}
.
${
CU_VERSION
:4:1
}
"
fi
cuda_toolkit_pckg
=
"cudatoolkit"
if
[[
$CUDA_VERSION
==
11.6
||
$CUDA_VERSION
==
11.7
||
$CUDA_VERSION
==
11.8
||
$CUDA_VERSION
==
12.1
]]
;
then
cuda_toolkit_pckg
=
"pytorch-cuda"
fi
echo
"Using CUDA
$CUDA_VERSION
as determined by CU_VERSION"
version
=
"
$(
python
-c
"print('.'.join(
\"
${
CUDA_VERSION
}
\"
.split('.')[:2]))"
)
"
cudatoolkit
=
"
${
cuda_toolkit_pckg
}
=
${
version
}
"
fi
printf
"Installing PyTorch with %s
\n
"
"
${
cudatoolkit
}
"
conda
install
-y
-c
"pytorch-
${
UPLOAD_CHANNEL
}
"
-c
nvidia
"pytorch-
${
UPLOAD_CHANNEL
}
"
::pytorch[build
=
"*
${
version
}
*"
]
"
${
cudatoolkit
}
"
torch_cuda
=
$(
python
-c
"import torch; print(torch.cuda.is_available())"
)
echo
torch.cuda.is_available is
$torch_cuda
if
[
!
-z
"
${
CUDA_VERSION
:-}
"
]
;
then
if
[
"
$torch_cuda
"
==
"False"
]
;
then
echo
"torch with cuda installed but torch.cuda.is_available() is False"
exit
1
fi
fi
source
"
$this_dir
/set_cuda_envs.sh"
printf
"* Installing torchvision
\n
"
"
$this_dir
/vc_env_helper.bat"
python setup.py develop
.circleci/unittest/windows/scripts/install_conda.bat
deleted
100644 → 0
View file @
285500d6
start
/wait
""
"
%miniconda_exe%
"
/S /InstallationType
=
JustMe
/RegisterPython
=
0
/AddToPath
=
0
/D
=
%tmp_conda%
.circleci/unittest/windows/scripts/post_process.sh
deleted
100644 → 0
View file @
285500d6
#!/usr/bin/env bash
set
-e
eval
"
$(
./conda/Scripts/conda.exe
'shell.bash'
'hook'
)
"
conda activate ./env
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment