Unverified Commit 3d60f498 authored by Samuel Marks's avatar Samuel Marks Committed by GitHub
Browse files

[*.py] Rename "Arguments:" to "Args:" (#3203)


Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
parent ca6fdd6d
......@@ -27,7 +27,7 @@ def deform_conv2d(
`Deformable Convolutional Networks
<https://arxiv.org/abs/1703.06211>`__ if :attr:`mask` is ``None``.
Arguments:
Args:
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
out_height, out_width]): offsets to be applied for each position in the
......@@ -154,7 +154,7 @@ class DeformConv2d(nn.Module):
def forward(self, input: Tensor, offset: Tensor, mask: Tensor = None) -> Tensor:
"""
Arguments:
Args:
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
out_height, out_width]): offsets to be applied for each position in the
......
......@@ -10,7 +10,7 @@ class ExtraFPNBlock(nn.Module):
"""
Base class for the extra block in the FPN.
Arguments:
Args:
results (List[Tensor]): the result of the FPN
x (List[Tensor]): the original feature maps
names (List[str]): the names for each one of the
......@@ -41,7 +41,7 @@ class FeaturePyramidNetwork(nn.Module):
The input to the model is expected to be an OrderedDict[Tensor], containing
the feature maps on top of which the FPN will be added.
Arguments:
Args:
in_channels_list (list[int]): number of channels for each feature map that
is passed to the module
out_channels (int): number of channels of the FPN representation
......@@ -134,7 +134,7 @@ class FeaturePyramidNetwork(nn.Module):
"""
Computes the FPN for a set of feature maps.
Arguments:
Args:
x (OrderedDict[Tensor]): feature maps for each feature level.
Returns:
......
......@@ -13,7 +13,7 @@ def sigmoid_focal_loss(
Original implementation from https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/focal_loss.py .
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Arguments:
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
......
......@@ -45,7 +45,7 @@ class LevelMapper(object):
"""Determine which FPN level each RoI in a set of RoIs should map to based
on the heuristic in the FPN paper.
Arguments:
Args:
k_min (int)
k_max (int)
canonical_scale (int)
......@@ -69,7 +69,7 @@ class LevelMapper(object):
def __call__(self, boxlists: List[Tensor]) -> Tensor:
"""
Arguments:
Args:
boxlists (list[BoxList])
"""
# Compute level ids
......@@ -87,7 +87,7 @@ class MultiScaleRoIAlign(nn.Module):
It infers the scale of the pooling via the heuristics present in the FPN paper.
Arguments:
Args:
featmap_names (List[str]): the names of the feature maps that will be used
for the pooling.
output_size (List[Tuple[int, int]] or List[int]): output size for the pooled region
......@@ -182,7 +182,7 @@ class MultiScaleRoIAlign(nn.Module):
image_shapes: List[Tuple[int, int]],
) -> Tensor:
"""
Arguments:
Args:
x (OrderedDict[Tensor]): feature maps for each level. They are assumed to have
all the same number of channels, but they can have different sizes.
boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
......
......@@ -18,7 +18,7 @@ def ps_roi_align(
Performs Position-Sensitive Region of Interest (RoI) Align operator
mentioned in Light-Head R-CNN.
Arguments:
Args:
input (Tensor[N, C, H, W]): input tensor
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
......
......@@ -17,7 +17,7 @@ def ps_roi_pool(
Performs Position-Sensitive Region of Interest (RoI) Pool operator
described in R-FCN
Arguments:
Args:
input (Tensor[N, C, H, W]): input tensor
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
......
......@@ -19,7 +19,7 @@ def roi_align(
"""
Performs Region of Interest (RoI) Align operator described in Mask R-CNN
Arguments:
Args:
input (Tensor[N, C, H, W]): input tensor
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
......
......@@ -17,7 +17,7 @@ def roi_pool(
"""
Performs Region of Interest (RoI) Pool operator described in Fast R-CNN
Arguments:
Args:
input (Tensor[N, C, H, W]): input tensor
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
format where the regions will be taken from. If a single Tensor is passed,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment