Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
350a3e8e
"git@developer.sourcefind.cn:OpenDAS/dgl.git" did not exist on "9737b2700f82937834823111043a73e83e9dc2e2"
Unverified
Commit
350a3e8e
authored
Mar 07, 2022
by
Vasilis Vryniotis
Committed by
GitHub
Mar 07, 2022
Browse files
Use frozen BN only if pre-trained. (#5443)
parent
b4cb352c
Changes
10
Hide whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
53 additions
and
50 deletions
+53
-50
torchvision/models/detection/faster_rcnn.py
torchvision/models/detection/faster_rcnn.py
+8
-10
torchvision/models/detection/fcos.py
torchvision/models/detection/fcos.py
+4
-4
torchvision/models/detection/keypoint_rcnn.py
torchvision/models/detection/keypoint_rcnn.py
+4
-4
torchvision/models/detection/mask_rcnn.py
torchvision/models/detection/mask_rcnn.py
+4
-4
torchvision/models/detection/retinanet.py
torchvision/models/detection/retinanet.py
+4
-4
torchvision/prototype/models/detection/faster_rcnn.py
torchvision/prototype/models/detection/faster_rcnn.py
+9
-8
torchvision/prototype/models/detection/fcos.py
torchvision/prototype/models/detection/fcos.py
+5
-4
torchvision/prototype/models/detection/keypoint_rcnn.py
torchvision/prototype/models/detection/keypoint_rcnn.py
+5
-4
torchvision/prototype/models/detection/mask_rcnn.py
torchvision/prototype/models/detection/mask_rcnn.py
+5
-4
torchvision/prototype/models/detection/retinanet.py
torchvision/prototype/models/detection/retinanet.py
+5
-4
No files found.
torchvision/models/detection/faster_rcnn.py
View file @
350a3e8e
...
@@ -383,15 +383,15 @@ def fasterrcnn_resnet50_fpn(
...
@@ -383,15 +383,15 @@ def fasterrcnn_resnet50_fpn(
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
passed (the default) this value is set to 3.
passed (the default) this value is set to 3.
"""
"""
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
pretrained
or
pretrained_backbone
pretrained
or
pretrained_backbo
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
if
pretrained
:
if
pretrained
:
# no need to download the backbone if pretrained is set
# no need to download the backbone if pretrained is set
pretrained_backbone
=
False
pretrained_backbone
=
False
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
model
=
FasterRCNN
(
backbone
,
num_classes
,
**
kwargs
)
model
=
FasterRCNN
(
backbone
,
num_classes
,
**
kwargs
)
if
pretrained
:
if
pretrained
:
...
@@ -410,16 +410,14 @@ def _fasterrcnn_mobilenet_v3_large_fpn(
...
@@ -410,16 +410,14 @@ def _fasterrcnn_mobilenet_v3_large_fpn(
trainable_backbone_layers
=
None
,
trainable_backbone_layers
=
None
,
**
kwargs
,
**
kwargs
,
):
):
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
pretrained
or
pretrained_backbone
pretrained
or
pretrained_backbo
ne
,
trainable_backbone_layers
,
6
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
6
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
if
pretrained
:
if
pretrained
:
pretrained_backbone
=
False
pretrained_backbone
=
False
backbone
=
mobilenet_v3_large
(
backbone
=
mobilenet_v3_large
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
_mobilenet_extractor
(
backbone
,
True
,
trainable_backbone_layers
)
backbone
=
_mobilenet_extractor
(
backbone
,
True
,
trainable_backbone_layers
)
anchor_sizes
=
(
anchor_sizes
=
(
...
...
torchvision/models/detection/fcos.py
View file @
350a3e8e
...
@@ -686,15 +686,15 @@ def fcos_resnet50_fpn(
...
@@ -686,15 +686,15 @@ def fcos_resnet50_fpn(
from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
trainable. If ``None`` is passed (the default) this value is set to 3. Default: None
trainable. If ``None`` is passed (the default) this value is set to 3. Default: None
"""
"""
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
pretrained
or
pretrained_backbone
pretrained
or
pretrained_backbo
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
if
pretrained
:
if
pretrained
:
# no need to download the backbone if pretrained is set
# no need to download the backbone if pretrained is set
pretrained_backbone
=
False
pretrained_backbone
=
False
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
)
)
...
...
torchvision/models/detection/keypoint_rcnn.py
View file @
350a3e8e
...
@@ -365,15 +365,15 @@ def keypointrcnn_resnet50_fpn(
...
@@ -365,15 +365,15 @@ def keypointrcnn_resnet50_fpn(
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
passed (the default) this value is set to 3.
passed (the default) this value is set to 3.
"""
"""
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
pretrained
or
pretrained_backbone
pretrained
or
pretrained_backbo
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
if
pretrained
:
if
pretrained
:
# no need to download the backbone if pretrained is set
# no need to download the backbone if pretrained is set
pretrained_backbone
=
False
pretrained_backbone
=
False
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
model
=
KeypointRCNN
(
backbone
,
num_classes
,
num_keypoints
=
num_keypoints
,
**
kwargs
)
model
=
KeypointRCNN
(
backbone
,
num_classes
,
num_keypoints
=
num_keypoints
,
**
kwargs
)
if
pretrained
:
if
pretrained
:
...
...
torchvision/models/detection/mask_rcnn.py
View file @
350a3e8e
...
@@ -360,15 +360,15 @@ def maskrcnn_resnet50_fpn(
...
@@ -360,15 +360,15 @@ def maskrcnn_resnet50_fpn(
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
passed (the default) this value is set to 3.
passed (the default) this value is set to 3.
"""
"""
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
pretrained
or
pretrained_backbone
pretrained
or
pretrained_backbo
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
if
pretrained
:
if
pretrained
:
# no need to download the backbone if pretrained is set
# no need to download the backbone if pretrained is set
pretrained_backbone
=
False
pretrained_backbone
=
False
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
model
=
MaskRCNN
(
backbone
,
num_classes
,
**
kwargs
)
model
=
MaskRCNN
(
backbone
,
num_classes
,
**
kwargs
)
if
pretrained
:
if
pretrained
:
...
...
torchvision/models/detection/retinanet.py
View file @
350a3e8e
...
@@ -626,15 +626,15 @@ def retinanet_resnet50_fpn(
...
@@ -626,15 +626,15 @@ def retinanet_resnet50_fpn(
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
passed (the default) this value is set to 3.
passed (the default) this value is set to 3.
"""
"""
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
pretrained
or
pretrained_backbone
pretrained
or
pretrained_backbo
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
if
pretrained
:
if
pretrained
:
# no need to download the backbone if pretrained is set
# no need to download the backbone if pretrained is set
pretrained_backbone
=
False
pretrained_backbone
=
False
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
pretrained
=
pretrained_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
# skip P2 because it generates too many anchors (according to their paper)
# skip P2 because it generates too many anchors (according to their paper)
backbone
=
_resnet_fpn_extractor
(
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
...
...
torchvision/prototype/models/detection/faster_rcnn.py
View file @
350a3e8e
from
typing
import
Any
,
Optional
,
Union
from
typing
import
Any
,
Optional
,
Union
from
torch
import
nn
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.transforms.functional
import
InterpolationMode
from
torchvision.transforms.functional
import
InterpolationMode
...
@@ -103,11 +104,11 @@ def fasterrcnn_resnet50_fpn(
...
@@ -103,11 +104,11 @@ def fasterrcnn_resnet50_fpn(
elif
num_classes
is
None
:
elif
num_classes
is
None
:
num_classes
=
91
num_classes
=
91
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
weights
is
not
None
or
weights_backbone
is
not
None
weights
is
not
None
or
weights_backbone
is
not
No
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
model
=
FasterRCNN
(
backbone
,
num_classes
=
num_classes
,
**
kwargs
)
model
=
FasterRCNN
(
backbone
,
num_classes
=
num_classes
,
**
kwargs
)
...
@@ -134,11 +135,11 @@ def _fasterrcnn_mobilenet_v3_large_fpn(
...
@@ -134,11 +135,11 @@ def _fasterrcnn_mobilenet_v3_large_fpn(
elif
num_classes
is
None
:
elif
num_classes
is
None
:
num_classes
=
91
num_classes
=
91
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
weights
is
not
None
or
weights_backbone
is
not
None
weights
is
not
None
or
weights_backbone
is
not
No
ne
,
trainable_backbone_layers
,
6
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
6
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
backbone
=
mobilenet_v3_large
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
mobilenet_v3_large
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_mobilenet_extractor
(
backbone
,
True
,
trainable_backbone_layers
)
backbone
=
_mobilenet_extractor
(
backbone
,
True
,
trainable_backbone_layers
)
anchor_sizes
=
(
anchor_sizes
=
(
(
(
...
...
torchvision/prototype/models/detection/fcos.py
View file @
350a3e8e
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torch
import
nn
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.transforms.functional
import
InterpolationMode
from
torchvision.transforms.functional
import
InterpolationMode
...
@@ -63,11 +64,11 @@ def fcos_resnet50_fpn(
...
@@ -63,11 +64,11 @@ def fcos_resnet50_fpn(
elif
num_classes
is
None
:
elif
num_classes
is
None
:
num_classes
=
91
num_classes
=
91
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
weights
is
not
None
or
weights_backbone
is
not
None
weights
is
not
None
or
weights_backbone
is
not
No
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
)
)
...
...
torchvision/prototype/models/detection/keypoint_rcnn.py
View file @
350a3e8e
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torch
import
nn
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.transforms.functional
import
InterpolationMode
from
torchvision.transforms.functional
import
InterpolationMode
...
@@ -91,11 +92,11 @@ def keypointrcnn_resnet50_fpn(
...
@@ -91,11 +92,11 @@ def keypointrcnn_resnet50_fpn(
if
num_keypoints
is
None
:
if
num_keypoints
is
None
:
num_keypoints
=
17
num_keypoints
=
17
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
weights
is
not
None
or
weights_backbone
is
not
None
weights
is
not
None
or
weights_backbone
is
not
No
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
model
=
KeypointRCNN
(
backbone
,
num_classes
,
num_keypoints
=
num_keypoints
,
**
kwargs
)
model
=
KeypointRCNN
(
backbone
,
num_classes
,
num_keypoints
=
num_keypoints
,
**
kwargs
)
...
...
torchvision/prototype/models/detection/mask_rcnn.py
View file @
350a3e8e
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torch
import
nn
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.transforms.functional
import
InterpolationMode
from
torchvision.transforms.functional
import
InterpolationMode
...
@@ -64,11 +65,11 @@ def maskrcnn_resnet50_fpn(
...
@@ -64,11 +65,11 @@ def maskrcnn_resnet50_fpn(
elif
num_classes
is
None
:
elif
num_classes
is
None
:
num_classes
=
91
num_classes
=
91
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
weights
is
not
None
or
weights_backbone
is
not
None
weights
is
not
None
or
weights_backbone
is
not
No
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
)
model
=
MaskRCNN
(
backbone
,
num_classes
=
num_classes
,
**
kwargs
)
model
=
MaskRCNN
(
backbone
,
num_classes
=
num_classes
,
**
kwargs
)
...
...
torchvision/prototype/models/detection/retinanet.py
View file @
350a3e8e
from
typing
import
Any
,
Optional
from
typing
import
Any
,
Optional
from
torch
import
nn
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.prototype.transforms
import
CocoEval
from
torchvision.transforms.functional
import
InterpolationMode
from
torchvision.transforms.functional
import
InterpolationMode
...
@@ -64,11 +65,11 @@ def retinanet_resnet50_fpn(
...
@@ -64,11 +65,11 @@ def retinanet_resnet50_fpn(
elif
num_classes
is
None
:
elif
num_classes
is
None
:
num_classes
=
91
num_classes
=
91
train
able_backbone_layers
=
_validate_trainable_layers
(
is_
train
ed
=
weights
is
not
None
or
weights_backbone
is
not
None
weights
is
not
None
or
weights_backbone
is
not
No
ne
,
trainable_backbone_layers
,
5
,
3
trainable_backbone_layers
=
_validate_trainable_layers
(
is_trai
ne
d
,
trainable_backbone_layers
,
5
,
3
)
)
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
if
is_trained
else
nn
.
BatchNorm2d
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
misc_nn_ops
.
FrozenBatchNorm2d
)
backbone
=
resnet50
(
weights
=
weights_backbone
,
progress
=
progress
,
norm_layer
=
norm_layer
)
# skip P2 because it generates too many anchors (according to their paper)
# skip P2 because it generates too many anchors (according to their paper)
backbone
=
_resnet_fpn_extractor
(
backbone
=
_resnet_fpn_extractor
(
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
backbone
,
trainable_backbone_layers
,
returned_layers
=
[
2
,
3
,
4
],
extra_blocks
=
LastLevelP6P7
(
256
,
256
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment