Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
32bccc53
You need to sign in or sign up before continuing.
Unverified
Commit
32bccc53
authored
May 17, 2021
by
Nicolas Hug
Committed by
GitHub
May 17, 2021
Browse files
Port _test_adjust_fn to pytest (#3845)
parent
0fece1f7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
214 additions
and
150 deletions
+214
-150
test/test_functional_tensor.py
test/test_functional_tensor.py
+214
-150
No files found.
test/test_functional_tensor.py
View file @
32bccc53
...
...
@@ -324,85 +324,6 @@ class Tester(TransformsTester):
self
.
_test_fn_on_batch
(
batch_tensors
,
F
.
pad
,
padding
=
script_pad
,
**
kwargs
)
def
_test_adjust_fn
(
self
,
fn
,
fn_pil
,
fn_t
,
configs
,
tol
=
2.0
+
1e-10
,
agg_method
=
"max"
,
dts
=
(
None
,
torch
.
float32
,
torch
.
float64
)):
script_fn
=
torch
.
jit
.
script
(
fn
)
torch
.
manual_seed
(
15
)
tensor
,
pil_img
=
self
.
_create_data
(
26
,
34
,
device
=
self
.
device
)
batch_tensors
=
self
.
_create_data_batch
(
16
,
18
,
num_samples
=
4
,
device
=
self
.
device
)
for
dt
in
dts
:
if
dt
is
not
None
:
tensor
=
F
.
convert_image_dtype
(
tensor
,
dt
)
batch_tensors
=
F
.
convert_image_dtype
(
batch_tensors
,
dt
)
for
config
in
configs
:
adjusted_tensor
=
fn_t
(
tensor
,
**
config
)
adjusted_pil
=
fn_pil
(
pil_img
,
**
config
)
scripted_result
=
script_fn
(
tensor
,
**
config
)
msg
=
"{}, {}"
.
format
(
dt
,
config
)
self
.
assertEqual
(
adjusted_tensor
.
dtype
,
scripted_result
.
dtype
,
msg
=
msg
)
self
.
assertEqual
(
adjusted_tensor
.
size
()[
1
:],
adjusted_pil
.
size
[::
-
1
],
msg
=
msg
)
rbg_tensor
=
adjusted_tensor
if
adjusted_tensor
.
dtype
!=
torch
.
uint8
:
rbg_tensor
=
F
.
convert_image_dtype
(
adjusted_tensor
,
torch
.
uint8
)
# Check that max difference does not exceed 2 in [0, 255] range
# Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
self
.
approxEqualTensorToPIL
(
rbg_tensor
.
float
(),
adjusted_pil
,
tol
=
tol
,
msg
=
msg
,
agg_method
=
agg_method
)
atol
=
1e-6
if
adjusted_tensor
.
dtype
==
torch
.
uint8
and
"cuda"
in
torch
.
device
(
self
.
device
).
type
:
atol
=
1.0
self
.
assertTrue
(
adjusted_tensor
.
allclose
(
scripted_result
,
atol
=
atol
),
msg
=
msg
)
self
.
_test_fn_on_batch
(
batch_tensors
,
fn
,
scripted_fn_atol
=
atol
,
**
config
)
def
test_adjust_brightness
(
self
):
self
.
_test_adjust_fn
(
F
.
adjust_brightness
,
F_pil
.
adjust_brightness
,
F_t
.
adjust_brightness
,
[{
"brightness_factor"
:
f
}
for
f
in
[
0.1
,
0.5
,
1.0
,
1.34
,
2.5
]]
)
def
test_adjust_contrast
(
self
):
self
.
_test_adjust_fn
(
F
.
adjust_contrast
,
F_pil
.
adjust_contrast
,
F_t
.
adjust_contrast
,
[{
"contrast_factor"
:
f
}
for
f
in
[
0.2
,
0.5
,
1.0
,
1.5
,
2.0
]]
)
def
test_adjust_saturation
(
self
):
self
.
_test_adjust_fn
(
F
.
adjust_saturation
,
F_pil
.
adjust_saturation
,
F_t
.
adjust_saturation
,
[{
"saturation_factor"
:
f
}
for
f
in
[
0.5
,
0.75
,
1.0
,
1.5
,
2.0
]]
)
def
test_adjust_hue
(
self
):
self
.
_test_adjust_fn
(
F
.
adjust_hue
,
F_pil
.
adjust_hue
,
F_t
.
adjust_hue
,
[{
"hue_factor"
:
f
}
for
f
in
[
-
0.45
,
-
0.25
,
0.0
,
0.25
,
0.45
]],
tol
=
16.1
,
agg_method
=
"max"
)
def
test_adjust_gamma
(
self
):
self
.
_test_adjust_fn
(
F
.
adjust_gamma
,
F_pil
.
adjust_gamma
,
F_t
.
adjust_gamma
,
[{
"gamma"
:
g1
,
"gain"
:
g2
}
for
g1
,
g2
in
zip
([
0.8
,
1.0
,
1.2
],
[
0.7
,
1.0
,
1.3
])]
)
def
test_resize
(
self
):
script_fn
=
torch
.
jit
.
script
(
F
.
resize
)
tensor
,
pil_img
=
self
.
_create_data
(
26
,
36
,
device
=
self
.
device
)
...
...
@@ -833,77 +754,6 @@ class Tester(TransformsTester):
msg
=
"{}, {}"
.
format
(
ksize
,
sigma
)
)
def
test_invert
(
self
):
self
.
_test_adjust_fn
(
F
.
invert
,
F_pil
.
invert
,
F_t
.
invert
,
[{}],
tol
=
1.0
,
agg_method
=
"max"
)
def
test_posterize
(
self
):
self
.
_test_adjust_fn
(
F
.
posterize
,
F_pil
.
posterize
,
F_t
.
posterize
,
[{
"bits"
:
bits
}
for
bits
in
range
(
0
,
8
)],
tol
=
1.0
,
agg_method
=
"max"
,
dts
=
(
None
,)
)
def
test_solarize
(
self
):
self
.
_test_adjust_fn
(
F
.
solarize
,
F_pil
.
solarize
,
F_t
.
solarize
,
[{
"threshold"
:
threshold
}
for
threshold
in
[
0
,
64
,
128
,
192
,
255
]],
tol
=
1.0
,
agg_method
=
"max"
,
dts
=
(
None
,)
)
self
.
_test_adjust_fn
(
F
.
solarize
,
lambda
img
,
threshold
:
F_pil
.
solarize
(
img
,
255
*
threshold
),
F_t
.
solarize
,
[{
"threshold"
:
threshold
}
for
threshold
in
[
0.0
,
0.25
,
0.5
,
0.75
,
1.0
]],
tol
=
1.0
,
agg_method
=
"max"
,
dts
=
(
torch
.
float32
,
torch
.
float64
)
)
def
test_adjust_sharpness
(
self
):
self
.
_test_adjust_fn
(
F
.
adjust_sharpness
,
F_pil
.
adjust_sharpness
,
F_t
.
adjust_sharpness
,
[{
"sharpness_factor"
:
f
}
for
f
in
[
0.2
,
0.5
,
1.0
,
1.5
,
2.0
]]
)
def
test_autocontrast
(
self
):
self
.
_test_adjust_fn
(
F
.
autocontrast
,
F_pil
.
autocontrast
,
F_t
.
autocontrast
,
[{}],
tol
=
1.0
,
agg_method
=
"max"
)
def
test_equalize
(
self
):
torch
.
set_deterministic
(
False
)
self
.
_test_adjust_fn
(
F
.
equalize
,
F_pil
.
equalize
,
F_t
.
equalize
,
[{}],
tol
=
1.0
,
agg_method
=
"max"
,
dts
=
(
None
,)
)
@
unittest
.
skipIf
(
not
torch
.
cuda
.
is_available
(),
reason
=
"Skip if no CUDA device"
)
class
CUDATester
(
Tester
):
...
...
@@ -1074,5 +924,219 @@ def test_resize_antialias(device, dt, size, interpolation, tester):
tester
.
assertTrue
(
resized_tensor
.
equal
(
resize_result
),
msg
=
f
"
{
size
}
,
{
interpolation
}
,
{
dt
}
"
)
def
check_functional_vs_PIL_vs_scripted
(
fn
,
fn_pil
,
fn_t
,
config
,
device
,
dtype
,
tol
=
2.0
+
1e-10
,
agg_method
=
"max"
):
tester
=
Tester
()
script_fn
=
torch
.
jit
.
script
(
fn
)
torch
.
manual_seed
(
15
)
tensor
,
pil_img
=
tester
.
_create_data
(
26
,
34
,
device
=
device
)
batch_tensors
=
tester
.
_create_data_batch
(
16
,
18
,
num_samples
=
4
,
device
=
device
)
if
dtype
is
not
None
:
tensor
=
F
.
convert_image_dtype
(
tensor
,
dtype
)
batch_tensors
=
F
.
convert_image_dtype
(
batch_tensors
,
dtype
)
out_fn_t
=
fn_t
(
tensor
,
**
config
)
out_pil
=
fn_pil
(
pil_img
,
**
config
)
out_scripted
=
script_fn
(
tensor
,
**
config
)
assert
out_fn_t
.
dtype
==
out_scripted
.
dtype
assert
out_fn_t
.
size
()[
1
:]
==
out_pil
.
size
[::
-
1
]
rbg_tensor
=
out_fn_t
if
out_fn_t
.
dtype
!=
torch
.
uint8
:
rbg_tensor
=
F
.
convert_image_dtype
(
out_fn_t
,
torch
.
uint8
)
# Check that max difference does not exceed 2 in [0, 255] range
# Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
tester
.
approxEqualTensorToPIL
(
rbg_tensor
.
float
(),
out_pil
,
tol
=
tol
,
agg_method
=
agg_method
)
atol
=
1e-6
if
out_fn_t
.
dtype
==
torch
.
uint8
and
"cuda"
in
torch
.
device
(
device
).
type
:
atol
=
1.0
assert
out_fn_t
.
allclose
(
out_scripted
,
atol
=
atol
)
# FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
tester
.
_test_fn_on_batch
(
batch_tensors
,
fn
,
scripted_fn_atol
=
atol
,
**
config
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"brightness_factor"
:
f
}
for
f
in
(
0.1
,
0.5
,
1.0
,
1.34
,
2.5
)])
def
test_adjust_brightness
(
device
,
dtype
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
adjust_brightness
,
F_pil
.
adjust_brightness
,
F_t
.
adjust_brightness
,
config
,
device
,
dtype
,
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
def
test_invert
(
device
,
dtype
):
check_functional_vs_PIL_vs_scripted
(
F
.
invert
,
F_pil
.
invert
,
F_t
.
invert
,
{},
device
,
dtype
,
tol
=
1.0
,
agg_method
=
"max"
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"bits"
:
bits
}
for
bits
in
range
(
0
,
8
)])
def
test_posterize
(
device
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
posterize
,
F_pil
.
posterize
,
F_t
.
posterize
,
config
,
device
,
dtype
=
None
,
tol
=
1.0
,
agg_method
=
"max"
,
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"threshold"
:
threshold
}
for
threshold
in
[
0
,
64
,
128
,
192
,
255
]])
def
test_solarize1
(
device
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
solarize
,
F_pil
.
solarize
,
F_t
.
solarize
,
config
,
device
,
dtype
=
None
,
tol
=
1.0
,
agg_method
=
"max"
,
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
torch
.
float32
,
torch
.
float64
))
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"threshold"
:
threshold
}
for
threshold
in
[
0.0
,
0.25
,
0.5
,
0.75
,
1.0
]])
def
test_solarize2
(
device
,
dtype
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
solarize
,
lambda
img
,
threshold
:
F_pil
.
solarize
(
img
,
255
*
threshold
),
F_t
.
solarize
,
config
,
device
,
dtype
,
tol
=
1.0
,
agg_method
=
"max"
,
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"sharpness_factor"
:
f
}
for
f
in
[
0.2
,
0.5
,
1.0
,
1.5
,
2.0
]])
def
test_adjust_sharpness
(
device
,
dtype
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
adjust_sharpness
,
F_pil
.
adjust_sharpness
,
F_t
.
adjust_sharpness
,
config
,
device
,
dtype
,
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
def
test_autocontrast
(
device
,
dtype
):
check_functional_vs_PIL_vs_scripted
(
F
.
autocontrast
,
F_pil
.
autocontrast
,
F_t
.
autocontrast
,
{},
device
,
dtype
,
tol
=
1.0
,
agg_method
=
"max"
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
def
test_equalize
(
device
):
torch
.
set_deterministic
(
False
)
check_functional_vs_PIL_vs_scripted
(
F
.
equalize
,
F_pil
.
equalize
,
F_t
.
equalize
,
{},
device
,
dtype
=
None
,
tol
=
1.0
,
agg_method
=
"max"
,
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"contrast_factor"
:
f
}
for
f
in
[
0.2
,
0.5
,
1.0
,
1.5
,
2.0
]])
def
test_adjust_contrast
(
device
,
dtype
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
adjust_contrast
,
F_pil
.
adjust_contrast
,
F_t
.
adjust_contrast
,
config
,
device
,
dtype
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"saturation_factor"
:
f
}
for
f
in
[
0.5
,
0.75
,
1.0
,
1.5
,
2.0
]])
def
test_adjust_saturation
(
device
,
dtype
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
adjust_saturation
,
F_pil
.
adjust_saturation
,
F_t
.
adjust_saturation
,
config
,
device
,
dtype
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"hue_factor"
:
f
}
for
f
in
[
-
0.45
,
-
0.25
,
0.0
,
0.25
,
0.45
]])
def
test_adjust_hue
(
device
,
dtype
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
adjust_hue
,
F_pil
.
adjust_hue
,
F_t
.
adjust_hue
,
config
,
device
,
dtype
,
tol
=
16.1
,
agg_method
=
"max"
)
@
pytest
.
mark
.
parametrize
(
'device'
,
cpu_and_gpu
())
@
pytest
.
mark
.
parametrize
(
'dtype'
,
(
None
,
torch
.
float32
,
torch
.
float64
))
@
pytest
.
mark
.
parametrize
(
'config'
,
[{
"gamma"
:
g1
,
"gain"
:
g2
}
for
g1
,
g2
in
zip
([
0.8
,
1.0
,
1.2
],
[
0.7
,
1.0
,
1.3
])])
def
test_adjust_gamma
(
device
,
dtype
,
config
):
check_functional_vs_PIL_vs_scripted
(
F
.
adjust_gamma
,
F_pil
.
adjust_gamma
,
F_t
.
adjust_gamma
,
config
,
device
,
dtype
,
)
if
__name__
==
'__main__'
:
unittest
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment