Unverified Commit 27b84916 authored by Philip Meier's avatar Philip Meier Committed by GitHub
Browse files

only return small set of targets by default from dataset wrapper (#7488)

parent ce653d8b
......@@ -75,7 +75,8 @@ print(type(target), type(target[0]), list(target[0].keys()))
# :func:`~torchvision.datasets.wrap_dataset_for_transforms_v2` function. For
# :class:`~torchvision.datasets.CocoDetection`, this changes the target structure to a single dictionary of lists. It
# also adds the key-value-pairs ``"boxes"``, ``"masks"``, and ``"labels"`` wrapped in the corresponding
# ``torchvision.datapoints``.
# ``torchvision.datapoints``. By default, it only returns ``"boxes"`` and ``"labels"`` to avoid transforming unnecessary
# items down the line, but you can pass the ``target_type`` parameter for fine-grained control.
dataset = datasets.wrap_dataset_for_transforms_v2(dataset)
......@@ -83,7 +84,7 @@ sample = dataset[0]
image, target = sample
print(type(image))
print(type(target), list(target.keys()))
print(type(target["boxes"]), type(target["masks"]), type(target["labels"]))
print(type(target["boxes"]), type(target["labels"]))
########################################################################################################################
# As baseline, let's have a look at a sample without transformations:
......
......@@ -572,9 +572,21 @@ class DatasetTestCase(unittest.TestCase):
try:
with self.create_dataset(config) as (dataset, _):
wrapped_dataset = wrap_dataset_for_transforms_v2(dataset)
wrapped_sample = wrapped_dataset[0]
assert tree_any(lambda item: isinstance(item, (Datapoint, PIL.Image.Image)), wrapped_sample)
for target_keys in [None, "all"]:
if target_keys is not None and self.DATASET_CLASS not in {
torchvision.datasets.CocoDetection,
torchvision.datasets.VOCDetection,
torchvision.datasets.Kitti,
torchvision.datasets.WIDERFace,
}:
with self.assertRaisesRegex(ValueError, "`target_keys` is currently only supported for"):
wrap_dataset_for_transforms_v2(dataset, target_keys=target_keys)
continue
wrapped_dataset = wrap_dataset_for_transforms_v2(dataset, target_keys=target_keys)
wrapped_sample = wrapped_dataset[0]
assert tree_any(lambda item: isinstance(item, (Datapoint, PIL.Image.Image)), wrapped_sample)
except TypeError as error:
msg = f"No wrapper exists for dataset class {type(dataset).__name__}"
if str(error).startswith(msg):
......
......@@ -771,6 +771,8 @@ class CocoDetectionTestCase(datasets_utils.ImageDatasetTestCase):
bbox=torch.rand(4).tolist(),
segmentation=[torch.rand(8).tolist()],
category_id=int(torch.randint(91, ())),
area=float(torch.rand(1)),
iscrowd=int(torch.randint(2, size=(1,))),
)
)
annotion_id += 1
......@@ -3336,7 +3338,7 @@ class TestDatasetWrapper:
mocker.patch.dict(
datapoints._dataset_wrapper.WRAPPER_FACTORIES,
clear=False,
values={datasets.FakeData: lambda dataset: lambda idx, sample: sentinel},
values={datasets.FakeData: lambda dataset, target_keys: lambda idx, sample: sentinel},
)
class MyFakeData(datasets.FakeData):
......
......@@ -2,6 +2,8 @@
from __future__ import annotations
import collections.abc
import contextlib
from collections import defaultdict
......@@ -14,7 +16,7 @@ from torchvision.transforms.v2 import functional as F
__all__ = ["wrap_dataset_for_transforms_v2"]
def wrap_dataset_for_transforms_v2(dataset):
def wrap_dataset_for_transforms_v2(dataset, target_keys=None):
"""[BETA] Wrap a ``torchvision.dataset`` for usage with :mod:`torchvision.transforms.v2`.
.. v2betastatus:: wrap_dataset_for_transforms_v2 function
......@@ -36,15 +38,17 @@ def wrap_dataset_for_transforms_v2(dataset):
* :class:`~torchvision.datasets.CocoDetection`: Instead of returning the target as list of dicts, the wrapper
returns a dict of lists. In addition, the key-value-pairs ``"boxes"`` (in ``XYXY`` coordinate format),
``"masks"`` and ``"labels"`` are added and wrap the data in the corresponding ``torchvision.datapoints``.
The original keys are preserved.
The original keys are preserved. If ``target_keys`` is ommitted, returns only the values for the ``"boxes"``
and ``"labels"``.
* :class:`~torchvision.datasets.VOCDetection`: The key-value-pairs ``"boxes"`` and ``"labels"`` are added to
the target and wrap the data in the corresponding ``torchvision.datapoints``. The original keys are
preserved.
preserved. If ``target_keys`` is ommitted, returns only the values for the ``"boxes"`` and ``"labels"``.
* :class:`~torchvision.datasets.CelebA`: The target for ``target_type="bbox"`` is converted to the ``XYXY``
coordinate format and wrapped into a :class:`~torchvision.datapoints.BoundingBox` datapoint.
* :class:`~torchvision.datasets.Kitti`: Instead returning the target as list of dictsthe wrapper returns a dict
of lists. In addition, the key-value-pairs ``"boxes"`` and ``"labels"`` are added and wrap the data
in the corresponding ``torchvision.datapoints``. The original keys are preserved.
* :class:`~torchvision.datasets.Kitti`: Instead returning the target as list of dicts, the wrapper returns a
dict of lists. In addition, the key-value-pairs ``"boxes"`` and ``"labels"`` are added and wrap the data
in the corresponding ``torchvision.datapoints``. The original keys are preserved. If ``target_keys`` is
ommitted, returns only the values for the ``"boxes"`` and ``"labels"``.
* :class:`~torchvision.datasets.OxfordIIITPet`: The target for ``target_type="segmentation"`` is wrapped into a
:class:`~torchvision.datapoints.Mask` datapoint.
* :class:`~torchvision.datasets.Cityscapes`: The target for ``target_type="semantic"`` is wrapped into a
......@@ -61,13 +65,13 @@ def wrap_dataset_for_transforms_v2(dataset):
Segmentation datasets
Segmentation datasets, e.g. :class:`~torchvision.datasets.VOCSegmentation` return a two-tuple of
Segmentation datasets, e.g. :class:`~torchvision.datasets.VOCSegmentation`, return a two-tuple of
:class:`PIL.Image.Image`'s. This wrapper leaves the image as is (first item), while wrapping the
segmentation mask into a :class:`~torchvision.datapoints.Mask` (second item).
Video classification datasets
Video classification datasets, e.g. :class:`~torchvision.datasets.Kinetics` return a three-tuple containing a
Video classification datasets, e.g. :class:`~torchvision.datasets.Kinetics`, return a three-tuple containing a
:class:`torch.Tensor` for the video and audio and a :class:`int` as label. This wrapper wraps the video into a
:class:`~torchvision.datapoints.Video` while leaving the other items as is.
......@@ -78,8 +82,23 @@ def wrap_dataset_for_transforms_v2(dataset):
Args:
dataset: the dataset instance to wrap for compatibility with transforms v2.
target_keys: Target keys to return in case the target is a dictionary. If ``None`` (default), selected keys are
specific to the dataset. If ``"all"``, returns the full target. Can also be a collection of strings for
fine grained access. Currently only supported for :class:`~torchvision.datasets.CocoDetection`,
:class:`~torchvision.datasets.VOCDetection`, :class:`~torchvision.datasets.Kitti`, and
:class:`~torchvision.datasets.WIDERFace`. See above for details.
"""
return VisionDatasetDatapointWrapper(dataset)
if not (
target_keys is None
or target_keys == "all"
or (isinstance(target_keys, collections.abc.Collection) and all(isinstance(key, str) for key in target_keys))
):
raise ValueError(
f"`target_keys` can be None, 'all', or a collection of strings denoting the keys to be returned, "
f"but got {target_keys}"
)
return VisionDatasetDatapointWrapper(dataset, target_keys)
class WrapperFactories(dict):
......@@ -99,7 +118,7 @@ WRAPPER_FACTORIES = WrapperFactories()
class VisionDatasetDatapointWrapper(Dataset):
def __init__(self, dataset):
def __init__(self, dataset, target_keys):
dataset_cls = type(dataset)
if not isinstance(dataset, datasets.VisionDataset):
......@@ -111,6 +130,16 @@ class VisionDatasetDatapointWrapper(Dataset):
for cls in dataset_cls.mro():
if cls in WRAPPER_FACTORIES:
wrapper_factory = WRAPPER_FACTORIES[cls]
if target_keys is not None and cls not in {
datasets.CocoDetection,
datasets.VOCDetection,
datasets.Kitti,
datasets.WIDERFace,
}:
raise ValueError(
f"`target_keys` is currently only supported for `CocoDetection`, `VOCDetection`, `Kitti`, "
f"and `WIDERFace`, but got {cls.__name__}."
)
break
elif cls is datasets.VisionDataset:
# TODO: If we have documentation on how to do that, put a link in the error message.
......@@ -123,7 +152,7 @@ class VisionDatasetDatapointWrapper(Dataset):
raise TypeError(msg)
self._dataset = dataset
self._wrapper = wrapper_factory(dataset)
self._wrapper = wrapper_factory(dataset, target_keys)
# We need to disable the transforms on the dataset here to be able to inject the wrapping before we apply them.
# Although internally, `datasets.VisionDataset` merges `transform` and `target_transform` into the joint
......@@ -170,7 +199,7 @@ def identity(item):
return item
def identity_wrapper_factory(dataset):
def identity_wrapper_factory(dataset, target_keys):
def wrapper(idx, sample):
return sample
......@@ -181,6 +210,20 @@ def pil_image_to_mask(pil_image):
return datapoints.Mask(pil_image)
def parse_target_keys(target_keys, *, available, default):
if target_keys is None:
target_keys = default
if target_keys == "all":
target_keys = available
else:
target_keys = set(target_keys)
extra = target_keys - available
if extra:
raise ValueError(f"Target keys {sorted(extra)} are not available")
return target_keys
def list_of_dicts_to_dict_of_lists(list_of_dicts):
dict_of_lists = defaultdict(list)
for dct in list_of_dicts:
......@@ -203,8 +246,8 @@ def wrap_target_by_type(target, *, target_types, type_wrappers):
return wrapped_target
def classification_wrapper_factory(dataset):
return identity_wrapper_factory(dataset)
def classification_wrapper_factory(dataset, target_keys):
return identity_wrapper_factory(dataset, target_keys)
for dataset_cls in [
......@@ -221,7 +264,7 @@ for dataset_cls in [
WRAPPER_FACTORIES.register(dataset_cls)(classification_wrapper_factory)
def segmentation_wrapper_factory(dataset):
def segmentation_wrapper_factory(dataset, target_keys):
def wrapper(idx, sample):
image, mask = sample
return image, pil_image_to_mask(mask)
......@@ -235,7 +278,7 @@ for dataset_cls in [
WRAPPER_FACTORIES.register(dataset_cls)(segmentation_wrapper_factory)
def video_classification_wrapper_factory(dataset):
def video_classification_wrapper_factory(dataset, target_keys):
if dataset.video_clips.output_format == "THWC":
raise RuntimeError(
f"{type(dataset).__name__} with `output_format='THWC'` is not supported by this wrapper, "
......@@ -261,15 +304,33 @@ for dataset_cls in [
@WRAPPER_FACTORIES.register(datasets.Caltech101)
def caltech101_wrapper_factory(dataset):
def caltech101_wrapper_factory(dataset, target_keys):
if "annotation" in dataset.target_type:
raise_not_supported("Caltech101 dataset with `target_type=['annotation', ...]`")
return classification_wrapper_factory(dataset)
return classification_wrapper_factory(dataset, target_keys)
@WRAPPER_FACTORIES.register(datasets.CocoDetection)
def coco_dectection_wrapper_factory(dataset):
def coco_dectection_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"segmentation",
"area",
"iscrowd",
"image_id",
"bbox",
"category_id",
# added by the wrapper
"boxes",
"masks",
"labels",
},
default={"boxes", "labels"},
)
def segmentation_to_mask(segmentation, *, spatial_size):
from pycocotools import mask
......@@ -288,30 +349,41 @@ def coco_dectection_wrapper_factory(dataset):
if not target:
return image, dict(image_id=image_id)
spatial_size = tuple(F.get_spatial_size(image))
batched_target = list_of_dicts_to_dict_of_lists(target)
target = {}
batched_target["image_id"] = image_id
if "image_id" in target_keys:
target["image_id"] = image_id
spatial_size = tuple(F.get_spatial_size(image))
batched_target["boxes"] = F.convert_format_bounding_box(
datapoints.BoundingBox(
batched_target["bbox"],
format=datapoints.BoundingBoxFormat.XYWH,
spatial_size=spatial_size,
),
new_format=datapoints.BoundingBoxFormat.XYXY,
)
batched_target["masks"] = datapoints.Mask(
torch.stack(
[
segmentation_to_mask(segmentation, spatial_size=spatial_size)
for segmentation in batched_target["segmentation"]
]
),
)
batched_target["labels"] = torch.tensor(batched_target["category_id"])
if "boxes" in target_keys:
target["boxes"] = F.convert_format_bounding_box(
datapoints.BoundingBox(
batched_target["bbox"],
format=datapoints.BoundingBoxFormat.XYWH,
spatial_size=spatial_size,
),
new_format=datapoints.BoundingBoxFormat.XYXY,
)
if "masks" in target_keys:
target["masks"] = datapoints.Mask(
torch.stack(
[
segmentation_to_mask(segmentation, spatial_size=spatial_size)
for segmentation in batched_target["segmentation"]
]
),
)
if "labels" in target_keys:
target["labels"] = torch.tensor(batched_target["category_id"])
return image, batched_target
for target_key in target_keys - {"image_id", "boxes", "masks", "labels"}:
target[target_key] = batched_target[target_key]
return image, target
return wrapper
......@@ -346,23 +418,41 @@ VOC_DETECTION_CATEGORY_TO_IDX = dict(zip(VOC_DETECTION_CATEGORIES, range(len(VOC
@WRAPPER_FACTORIES.register(datasets.VOCDetection)
def voc_detection_wrapper_factory(dataset):
def voc_detection_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"annotation",
# added by the wrapper
"boxes",
"labels",
},
default={"boxes", "labels"},
)
def wrapper(idx, sample):
image, target = sample
batched_instances = list_of_dicts_to_dict_of_lists(target["annotation"]["object"])
target["boxes"] = datapoints.BoundingBox(
[
[int(bndbox[part]) for part in ("xmin", "ymin", "xmax", "ymax")]
for bndbox in batched_instances["bndbox"]
],
format=datapoints.BoundingBoxFormat.XYXY,
spatial_size=(image.height, image.width),
)
target["labels"] = torch.tensor(
[VOC_DETECTION_CATEGORY_TO_IDX[category] for category in batched_instances["name"]]
)
if "annotation" not in target_keys:
target = {}
if "boxes" in target_keys:
target["boxes"] = datapoints.BoundingBox(
[
[int(bndbox[part]) for part in ("xmin", "ymin", "xmax", "ymax")]
for bndbox in batched_instances["bndbox"]
],
format=datapoints.BoundingBoxFormat.XYXY,
spatial_size=(image.height, image.width),
)
if "labels" in target_keys:
target["labels"] = torch.tensor(
[VOC_DETECTION_CATEGORY_TO_IDX[category] for category in batched_instances["name"]]
)
return image, target
......@@ -370,15 +460,15 @@ def voc_detection_wrapper_factory(dataset):
@WRAPPER_FACTORIES.register(datasets.SBDataset)
def sbd_wrapper(dataset):
def sbd_wrapper(dataset, target_keys):
if dataset.mode == "boundaries":
raise_not_supported("SBDataset with mode='boundaries'")
return segmentation_wrapper_factory(dataset)
return segmentation_wrapper_factory(dataset, target_keys)
@WRAPPER_FACTORIES.register(datasets.CelebA)
def celeba_wrapper_factory(dataset):
def celeba_wrapper_factory(dataset, target_keys):
if any(target_type in dataset.target_type for target_type in ["attr", "landmarks"]):
raise_not_supported("`CelebA` dataset with `target_type=['attr', 'landmarks', ...]`")
......@@ -410,17 +500,47 @@ KITTI_CATEGORY_TO_IDX = dict(zip(KITTI_CATEGORIES, range(len(KITTI_CATEGORIES)))
@WRAPPER_FACTORIES.register(datasets.Kitti)
def kitti_wrapper_factory(dataset):
def kitti_wrapper_factory(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
# native
"type",
"truncated",
"occluded",
"alpha",
"bbox",
"dimensions",
"location",
"rotation_y",
# added by the wrapper
"boxes",
"labels",
},
default={"boxes", "labels"},
)
def wrapper(idx, sample):
image, target = sample
if target is not None:
target = list_of_dicts_to_dict_of_lists(target)
if target is None:
return image, target
batched_target = list_of_dicts_to_dict_of_lists(target)
target = {}
if "boxes" in target_keys:
target["boxes"] = datapoints.BoundingBox(
target["bbox"], format=datapoints.BoundingBoxFormat.XYXY, spatial_size=(image.height, image.width)
batched_target["bbox"],
format=datapoints.BoundingBoxFormat.XYXY,
spatial_size=(image.height, image.width),
)
target["labels"] = torch.tensor([KITTI_CATEGORY_TO_IDX[category] for category in target["type"]])
if "labels" in target_keys:
target["labels"] = torch.tensor([KITTI_CATEGORY_TO_IDX[category] for category in batched_target["type"]])
for target_key in target_keys - {"boxes", "labels"}:
target[target_key] = batched_target[target_key]
return image, target
......@@ -428,7 +548,7 @@ def kitti_wrapper_factory(dataset):
@WRAPPER_FACTORIES.register(datasets.OxfordIIITPet)
def oxford_iiit_pet_wrapper_factor(dataset):
def oxford_iiit_pet_wrapper_factor(dataset, target_keys):
def wrapper(idx, sample):
image, target = sample
......@@ -447,7 +567,7 @@ def oxford_iiit_pet_wrapper_factor(dataset):
@WRAPPER_FACTORIES.register(datasets.Cityscapes)
def cityscapes_wrapper_factory(dataset):
def cityscapes_wrapper_factory(dataset, target_keys):
if any(target_type in dataset.target_type for target_type in ["polygon", "color"]):
raise_not_supported("`Cityscapes` dataset with `target_type=['polygon', 'color', ...]`")
......@@ -482,11 +602,30 @@ def cityscapes_wrapper_factory(dataset):
@WRAPPER_FACTORIES.register(datasets.WIDERFace)
def widerface_wrapper(dataset):
def widerface_wrapper(dataset, target_keys):
target_keys = parse_target_keys(
target_keys,
available={
"bbox",
"blur",
"expression",
"illumination",
"occlusion",
"pose",
"invalid",
},
default="all",
)
def wrapper(idx, sample):
image, target = sample
if target is not None:
if target is None:
return image, target
target = {key: target[key] for key in target_keys}
if "bbox" in target_keys:
target["bbox"] = F.convert_format_bounding_box(
datapoints.BoundingBox(
target["bbox"], format=datapoints.BoundingBoxFormat.XYWH, spatial_size=(image.height, image.width)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment