Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
220126a4
Unverified
Commit
220126a4
authored
Jan 19, 2017
by
Thomas Grainger
Browse files
cleanup headings from pandoc
parent
15ce0363
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
13 deletions
+13
-13
README.rst
README.rst
+13
-13
No files found.
README.rst
View file @
220126a4
...
...
@@ -201,7 +201,7 @@ Transforms are common image transforms. They can be chained together
using ``transforms.Compose``
``transforms.Compose``
~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^
One can compose several transforms together. For example.
...
...
@@ -216,10 +216,10 @@ One can compose several transforms together. For example.
])
Transforms on PIL.Image
-----------------------
~~~~~~~~~~~~~~~~~~~~~~~
``Scale(size, interpolation=Image.BILINEAR)``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Rescales the input PIL.Image to the given 'size'. 'size' will be the
size of the smaller edge.
...
...
@@ -229,14 +229,14 @@ height / width, size) - size: size of the smaller edge - interpolation:
Default: PIL.Image.BILINEAR
``CenterCrop(size)`` - center-crops the image to the given size
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Crops the given PIL.Image at the center to have a region of the given
size. size can be a tuple (target\_height, target\_width) or an integer,
in which case the target will be of a square shape (size, size)
``RandomCrop(size, padding=0)``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Crops the given PIL.Image at a random location to have a region of the
given size. size can be a tuple (target\_height, target\_width) or an
...
...
@@ -245,13 +245,13 @@ If ``padding`` is non-zero, then the image is first zero-padded on each
side with ``padding`` pixels.
``RandomHorizontalFlip()``
~~~~~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^^^^^
Randomly horizontally flips the given PIL.Image with a probability of
0.5
``RandomSizedCrop(size, interpolation=Image.BILINEAR)``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the
original size and and a random aspect ratio of 3/4 to 4/3 of the
...
...
@@ -261,23 +261,23 @@ This is popularly used to train the Inception networks - size: size of
the smaller edge - interpolation: Default: PIL.Image.BILINEAR
``Pad(padding, fill=0)``
~~~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^^^
Pads the given image on each side with ``padding`` number of pixels, and
the padding pixels are filled with pixel value ``fill``. If a ``5x5``
image is padded with ``padding=1`` then it becomes ``7x7``
Transforms on torch.\*Tensor
----------------------------
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``Normalize(mean, std)``
~~~~~~~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^^^^^^^
Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of
the torch.\*Tensor, i.e. channel = (channel - mean) / std
Conversion Transforms
---------------------
~~~~~~~~~~~~~~~~~~~~~
- ``ToTensor()`` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x
C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W)
...
...
@@ -287,10 +287,10 @@ Conversion Transforms
shape H x W x C to a PIL.Image of range [0, 255]
Generic Transofrms
------------------
~~~~~~~~~~~~~~~~~~
``Lambda(lambda)``
~~~~~~~~~~~~~~~~~~
^^^^^^^^^^^^^^^^^^
Given a Python lambda, applies it to the input ``img`` and returns it.
For example:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment