Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
0e7ae64b
Unverified
Commit
0e7ae64b
authored
Jun 11, 2021
by
DevPranjal
Committed by
GitHub
Jun 11, 2021
Browse files
Port tests in test_transforms_video.py to pytest (#4040)
parent
fb2598b8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
30 additions
and
29 deletions
+30
-29
test/test_transforms_video.py
test/test_transforms_video.py
+30
-29
No files found.
test/test_transforms_video.py
View file @
0e7ae64b
import
torch
import
torch
from
torchvision.transforms
import
Compose
from
torchvision.transforms
import
Compose
import
unit
test
import
py
test
import
random
import
random
import
numpy
as
np
import
numpy
as
np
import
warnings
import
warnings
...
@@ -17,7 +17,7 @@ with warnings.catch_warnings(record=True):
...
@@ -17,7 +17,7 @@ with warnings.catch_warnings(record=True):
import
torchvision.transforms._transforms_video
as
transforms
import
torchvision.transforms._transforms_video
as
transforms
class
TestVideoTransforms
(
unittest
.
TestCase
):
class
TestVideoTransforms
():
def
test_random_crop_video
(
self
):
def
test_random_crop_video
(
self
):
numFrames
=
random
.
randint
(
4
,
128
)
numFrames
=
random
.
randint
(
4
,
128
)
...
@@ -30,8 +30,8 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -30,8 +30,8 @@ class TestVideoTransforms(unittest.TestCase):
transforms
.
ToTensorVideo
(),
transforms
.
ToTensorVideo
(),
transforms
.
RandomCropVideo
((
oheight
,
owidth
)),
transforms
.
RandomCropVideo
((
oheight
,
owidth
)),
])(
clip
)
])(
clip
)
self
.
assert
Equal
(
result
.
size
(
2
)
,
oheight
)
assert
result
.
size
(
2
)
==
oheight
self
.
assert
Equal
(
result
.
size
(
3
)
,
owidth
)
assert
result
.
size
(
3
)
==
owidth
transforms
.
RandomCropVideo
((
oheight
,
owidth
)).
__repr__
()
transforms
.
RandomCropVideo
((
oheight
,
owidth
)).
__repr__
()
...
@@ -46,8 +46,8 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -46,8 +46,8 @@ class TestVideoTransforms(unittest.TestCase):
transforms
.
ToTensorVideo
(),
transforms
.
ToTensorVideo
(),
transforms
.
RandomResizedCropVideo
((
oheight
,
owidth
)),
transforms
.
RandomResizedCropVideo
((
oheight
,
owidth
)),
])(
clip
)
])(
clip
)
self
.
assert
Equal
(
result
.
size
(
2
)
,
oheight
)
assert
result
.
size
(
2
)
==
oheight
self
.
assert
Equal
(
result
.
size
(
3
)
,
owidth
)
assert
result
.
size
(
3
)
==
owidth
transforms
.
RandomResizedCropVideo
((
oheight
,
owidth
)).
__repr__
()
transforms
.
RandomResizedCropVideo
((
oheight
,
owidth
)).
__repr__
()
...
@@ -70,7 +70,7 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -70,7 +70,7 @@ class TestVideoTransforms(unittest.TestCase):
msg
=
"height: "
+
str
(
height
)
+
" width: "
\
msg
=
"height: "
+
str
(
height
)
+
" width: "
\
+
str
(
width
)
+
" oheight: "
+
str
(
oheight
)
+
" owidth: "
+
str
(
owidth
)
+
str
(
width
)
+
" oheight: "
+
str
(
oheight
)
+
" owidth: "
+
str
(
owidth
)
self
.
assert
Equal
(
result
.
sum
().
item
()
,
0
,
msg
)
assert
result
.
sum
().
item
()
==
0
,
msg
oheight
+=
1
oheight
+=
1
owidth
+=
1
owidth
+=
1
...
@@ -82,7 +82,7 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -82,7 +82,7 @@ class TestVideoTransforms(unittest.TestCase):
msg
=
"height: "
+
str
(
height
)
+
" width: "
\
msg
=
"height: "
+
str
(
height
)
+
" width: "
\
+
str
(
width
)
+
" oheight: "
+
str
(
oheight
)
+
" owidth: "
+
str
(
owidth
)
+
str
(
width
)
+
" oheight: "
+
str
(
oheight
)
+
" owidth: "
+
str
(
owidth
)
self
.
assert
Equal
(
sum1
.
item
()
>
1
,
True
,
msg
)
assert
sum1
.
item
()
>
1
,
msg
oheight
+=
1
oheight
+=
1
owidth
+=
1
owidth
+=
1
...
@@ -94,28 +94,29 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -94,28 +94,29 @@ class TestVideoTransforms(unittest.TestCase):
msg
=
"height: "
+
str
(
height
)
+
" width: "
\
msg
=
"height: "
+
str
(
height
)
+
" width: "
\
+
str
(
width
)
+
" oheight: "
+
str
(
oheight
)
+
" owidth: "
+
str
(
owidth
)
+
str
(
width
)
+
" oheight: "
+
str
(
oheight
)
+
" owidth: "
+
str
(
owidth
)
self
.
assert
True
(
sum2
.
item
()
>
1
,
msg
)
assert
sum2
.
item
()
>
1
,
msg
self
.
assert
True
(
sum2
.
item
()
>
sum1
.
item
(),
msg
)
assert
sum2
.
item
()
>
sum1
.
item
(),
msg
@
unittest
.
skipIf
(
stats
is
None
,
'scipy.stats is not available'
)
@
pytest
.
mark
.
skipif
(
stats
is
None
,
reason
=
'scipy.stats is not available'
)
def
test_normalize_video
(
self
):
@
pytest
.
mark
.
parametrize
(
'channels'
,
[
1
,
3
])
def
test_normalize_video
(
self
,
channels
):
def
samples_from_standard_normal
(
tensor
):
def
samples_from_standard_normal
(
tensor
):
p_value
=
stats
.
kstest
(
list
(
tensor
.
view
(
-
1
)),
'norm'
,
args
=
(
0
,
1
)).
pvalue
p_value
=
stats
.
kstest
(
list
(
tensor
.
view
(
-
1
)),
'norm'
,
args
=
(
0
,
1
)).
pvalue
return
p_value
>
0.0001
return
p_value
>
0.0001
random_state
=
random
.
getstate
()
random_state
=
random
.
getstate
()
random
.
seed
(
42
)
random
.
seed
(
42
)
for
channels
in
[
1
,
3
]:
numFrames
=
random
.
randint
(
4
,
128
)
numFrames
=
random
.
randint
(
4
,
128
)
height
=
random
.
randint
(
32
,
256
)
height
=
random
.
randint
(
32
,
256
)
width
=
random
.
randint
(
32
,
256
)
width
=
random
.
randint
(
32
,
256
)
mean
=
random
.
random
()
mean
=
random
.
random
()
std
=
random
.
random
()
std
=
random
.
random
()
clip
=
torch
.
normal
(
mean
,
std
,
size
=
(
channels
,
numFrames
,
height
,
width
))
clip
=
torch
.
normal
(
mean
,
std
,
size
=
(
channels
,
numFrames
,
height
,
width
))
mean
=
[
clip
[
c
].
mean
().
item
()
for
c
in
range
(
channels
)]
mean
=
[
clip
[
c
].
mean
().
item
()
for
c
in
range
(
channels
)]
std
=
[
clip
[
c
].
std
().
item
()
for
c
in
range
(
channels
)]
std
=
[
clip
[
c
].
std
().
item
()
for
c
in
range
(
channels
)]
normalized
=
transforms
.
NormalizeVideo
(
mean
,
std
)(
clip
)
normalized
=
transforms
.
NormalizeVideo
(
mean
,
std
)(
clip
)
self
.
assert
True
(
samples_from_standard_normal
(
normalized
)
)
assert
samples_from_standard_normal
(
normalized
)
random
.
setstate
(
random_state
)
random
.
setstate
(
random_state
)
# Checking the optional in-place behaviour
# Checking the optional in-place behaviour
...
@@ -129,11 +130,11 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -129,11 +130,11 @@ class TestVideoTransforms(unittest.TestCase):
numFrames
,
height
,
width
=
64
,
4
,
4
numFrames
,
height
,
width
=
64
,
4
,
4
trans
=
transforms
.
ToTensorVideo
()
trans
=
transforms
.
ToTensorVideo
()
with
self
.
assertR
aises
(
TypeError
):
with
pytest
.
r
aises
(
TypeError
):
trans
(
np
.
random
.
rand
(
numFrames
,
height
,
width
,
1
).
tolist
())
trans
(
np
.
random
.
rand
(
numFrames
,
height
,
width
,
1
).
tolist
())
trans
(
torch
.
rand
((
numFrames
,
height
,
width
,
1
),
dtype
=
torch
.
float
))
trans
(
torch
.
rand
((
numFrames
,
height
,
width
,
1
),
dtype
=
torch
.
float
))
with
self
.
assertR
aises
(
ValueError
):
with
pytest
.
r
aises
(
ValueError
):
trans
(
torch
.
ones
((
3
,
numFrames
,
height
,
width
,
3
),
dtype
=
torch
.
uint8
))
trans
(
torch
.
ones
((
3
,
numFrames
,
height
,
width
,
3
),
dtype
=
torch
.
uint8
))
trans
(
torch
.
ones
((
height
,
width
,
3
),
dtype
=
torch
.
uint8
))
trans
(
torch
.
ones
((
height
,
width
,
3
),
dtype
=
torch
.
uint8
))
trans
(
torch
.
ones
((
width
,
3
),
dtype
=
torch
.
uint8
))
trans
(
torch
.
ones
((
width
,
3
),
dtype
=
torch
.
uint8
))
...
@@ -141,7 +142,7 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -141,7 +142,7 @@ class TestVideoTransforms(unittest.TestCase):
trans
.
__repr__
()
trans
.
__repr__
()
@
unit
test
.
skip
I
f
(
stats
is
None
,
'scipy.stats not available'
)
@
py
test
.
mark
.
skip
i
f
(
stats
is
None
,
reason
=
'scipy.stats not available'
)
def
test_random_horizontal_flip_video
(
self
):
def
test_random_horizontal_flip_video
(
self
):
random_state
=
random
.
getstate
()
random_state
=
random
.
getstate
()
random
.
seed
(
42
)
random
.
seed
(
42
)
...
@@ -157,7 +158,7 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -157,7 +158,7 @@ class TestVideoTransforms(unittest.TestCase):
p_value
=
stats
.
binom_test
(
num_horizontal
,
num_samples
,
p
=
0.5
)
p_value
=
stats
.
binom_test
(
num_horizontal
,
num_samples
,
p
=
0.5
)
random
.
setstate
(
random_state
)
random
.
setstate
(
random_state
)
self
.
assert
Greater
(
p_value
,
0.0001
)
assert
p_value
>
0.0001
num_samples
=
250
num_samples
=
250
num_horizontal
=
0
num_horizontal
=
0
...
@@ -168,10 +169,10 @@ class TestVideoTransforms(unittest.TestCase):
...
@@ -168,10 +169,10 @@ class TestVideoTransforms(unittest.TestCase):
p_value
=
stats
.
binom_test
(
num_horizontal
,
num_samples
,
p
=
0.7
)
p_value
=
stats
.
binom_test
(
num_horizontal
,
num_samples
,
p
=
0.7
)
random
.
setstate
(
random_state
)
random
.
setstate
(
random_state
)
self
.
assert
Greater
(
p_value
,
0.0001
)
assert
p_value
>
0.0001
transforms
.
RandomHorizontalFlipVideo
().
__repr__
()
transforms
.
RandomHorizontalFlipVideo
().
__repr__
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unit
test
.
main
()
py
test
.
main
(
[
__file__
]
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment