"deform_conv2d(Tensor input, Tensor weight, Tensor offset, Tensor mask, Tensor bias, int stride_h, int stride_w, int pad_h, int pad_w, int dilation_h, int dilation_w, int groups, int offset_groups, bool use_mask) -> Tensor");
"deform_conv2d(Tensor input, Tensor weight, Tensor offset, Tensor mask, Tensor bias, int stride_h, int stride_w, int pad_h, int pad_w, int dilation_h, int dilation_w, int groups, int offset_groups, bool use_mask) -> Tensor");
...
@@ -87,257 +90,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
...
@@ -87,257 +90,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
"_deform_conv2d_backward(Tensor grad, Tensor input, Tensor weight, Tensor offset, Tensor mask, Tensor bias, int stride_h, int stride_w, int pad_h, int pad_w, int dilation_h, int dilation_w, int groups, int offset_groups, bool use_mask) -> (Tensor, Tensor, Tensor, Tensor, Tensor)");
"_deform_conv2d_backward(Tensor grad, Tensor input, Tensor weight, Tensor offset, Tensor mask, Tensor bias, int stride_h, int stride_w, int pad_h, int pad_w, int dilation_h, int dilation_w, int groups, int offset_groups, bool use_mask) -> (Tensor, Tensor, Tensor, Tensor, Tensor)");
"ps_roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio) -> (Tensor, Tensor)");
"ps_roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio) -> (Tensor, Tensor)");
...
@@ -57,157 +60,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
...
@@ -57,157 +60,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
"_ps_roi_align_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio, int batch_size, int channels, int height, int width) -> Tensor");
"_ps_roi_align_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio, int batch_size, int channels, int height, int width) -> Tensor");
"ps_roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)");
"ps_roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)");
...
@@ -53,142 +56,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
...
@@ -53,142 +56,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
"_ps_roi_pool_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width) -> Tensor");
"_ps_roi_pool_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width) -> Tensor");
"roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio, bool aligned) -> Tensor");
"roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio, bool aligned) -> Tensor");
...
@@ -67,157 +70,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
...
@@ -67,157 +70,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
"_roi_align_backward(Tensor grad, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width, int sampling_ratio, bool aligned) -> Tensor");
"_roi_align_backward(Tensor grad, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width, int sampling_ratio, bool aligned) -> Tensor");
"roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)");
"roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)");
...
@@ -52,142 +55,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
...
@@ -52,142 +55,5 @@ TORCH_LIBRARY_FRAGMENT(torchvision, m) {
"_roi_pool_backward(Tensor grad, Tensor rois, Tensor argmax, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width) -> Tensor");
"_roi_pool_backward(Tensor grad, Tensor rois, Tensor argmax, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width) -> Tensor");