Unverified Commit 093757db authored by Vivek Kumar's avatar Vivek Kumar Committed by GitHub
Browse files

Port test_datasets_samplers.py to pytest (#4037)

parent 13ed657d
......@@ -2,7 +2,7 @@ import contextlib
import sys
import os
import torch
import unittest
import pytest
from torchvision import io
from torchvision.datasets.samplers import (
......@@ -38,13 +38,13 @@ def get_list_of_videos(num_videos=5, sizes=None, fps=None):
yield names
@unittest.skipIf(not io.video._av_available(), "this test requires av")
class Tester(unittest.TestCase):
@pytest.mark.skipif(not io.video._av_available(), reason="this test requires av")
class TestDatasetsSamplers:
def test_random_clip_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
assert len(sampler) == 3 * 3
indices = torch.tensor(list(iter(sampler)))
videos = torch.div(indices, 5, rounding_mode='floor')
v_idxs, count = torch.unique(videos, return_counts=True)
......@@ -55,10 +55,10 @@ class Tester(unittest.TestCase):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 2 + 3 + 3)
assert len(sampler) == 2 + 3 + 3
indices = list(iter(sampler))
self.assertIn(0, indices)
self.assertIn(1, indices)
assert 0 in indices
assert 1 in indices
# remove elements of the first video, to simplify testing
indices.remove(0)
indices.remove(1)
......@@ -72,7 +72,7 @@ class Tester(unittest.TestCase):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = UniformClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
assert len(sampler) == 3 * 3
indices = torch.tensor(list(iter(sampler)))
videos = torch.div(indices, 5, rounding_mode='floor')
v_idxs, count = torch.unique(videos, return_counts=True)
......@@ -84,7 +84,7 @@ class Tester(unittest.TestCase):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = UniformClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
assert len(sampler) == 3 * 3
indices = torch.tensor(list(iter(sampler)))
assert_equal(indices, torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11]))
......@@ -100,7 +100,7 @@ class Tester(unittest.TestCase):
group_size=3,
)
indices = torch.tensor(list(iter(distributed_sampler_rank0)))
self.assertEqual(len(distributed_sampler_rank0), 6)
assert len(distributed_sampler_rank0) == 6
assert_equal(indices, torch.tensor([0, 2, 4, 10, 12, 14]))
distributed_sampler_rank1 = DistributedSampler(
......@@ -110,9 +110,9 @@ class Tester(unittest.TestCase):
group_size=3,
)
indices = torch.tensor(list(iter(distributed_sampler_rank1)))
self.assertEqual(len(distributed_sampler_rank1), 6)
assert len(distributed_sampler_rank1) == 6
assert_equal(indices, torch.tensor([5, 7, 9, 0, 2, 4]))
if __name__ == '__main__':
unittest.main()
pytest.main([__file__])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment