Commit 04fde085 authored by Sam Gross's avatar Sam Gross Committed by Soumith Chintala
Browse files

Add ImageNet trained VGG models and fix weight initialization (#62)

parent 683852d2
import torch.nn as nn import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import math
__all__ = [ __all__ = [
...@@ -7,6 +9,14 @@ __all__ = [ ...@@ -7,6 +9,14 @@ __all__ = [
] ]
model_urls = {
'vgg11': 'https://s3.amazonaws.com/pytorch/models/vgg11-fb7e83b2.pth',
'vgg13': 'https://s3.amazonaws.com/pytorch/models/vgg13-58758d87.pth',
'vgg16': 'https://s3.amazonaws.com/pytorch/models/vgg16-82412952.pth',
'vgg19': 'https://s3.amazonaws.com/pytorch/models/vgg19-341d7465.pth',
}
class VGG(nn.Module): class VGG(nn.Module):
def __init__(self, features): def __init__(self, features):
super(VGG, self).__init__() super(VGG, self).__init__()
...@@ -20,6 +30,7 @@ class VGG(nn.Module): ...@@ -20,6 +30,7 @@ class VGG(nn.Module):
nn.ReLU(True), nn.ReLU(True),
nn.Linear(4096, 1000), nn.Linear(4096, 1000),
) )
self._initialize_weights()
def forward(self, x): def forward(self, x):
x = self.features(x) x = self.features(x)
...@@ -27,6 +38,21 @@ class VGG(nn.Module): ...@@ -27,6 +38,21 @@ class VGG(nn.Module):
x = self.classifier(x) x = self.classifier(x)
return x return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def make_layers(cfg, batch_norm=False): def make_layers(cfg, batch_norm=False):
layers = [] layers = []
...@@ -52,9 +78,16 @@ cfg = { ...@@ -52,9 +78,16 @@ cfg = {
} }
def vgg11(): def vgg11(pretrained=False):
"""VGG 11-layer model (configuration "A")""" """VGG 11-layer model (configuration "A")
return VGG(make_layers(cfg['A']))
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['A']))
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11']))
return model
def vgg11_bn(): def vgg11_bn():
...@@ -62,9 +95,16 @@ def vgg11_bn(): ...@@ -62,9 +95,16 @@ def vgg11_bn():
return VGG(make_layers(cfg['A'], batch_norm=True)) return VGG(make_layers(cfg['A'], batch_norm=True))
def vgg13(): def vgg13(pretrained=False):
"""VGG 13-layer model (configuration "B")""" """VGG 13-layer model (configuration "B")
return VGG(make_layers(cfg['B']))
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['B']))
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13']))
return model
def vgg13_bn(): def vgg13_bn():
...@@ -72,9 +112,16 @@ def vgg13_bn(): ...@@ -72,9 +112,16 @@ def vgg13_bn():
return VGG(make_layers(cfg['B'], batch_norm=True)) return VGG(make_layers(cfg['B'], batch_norm=True))
def vgg16(): def vgg16(pretrained=False):
"""VGG 16-layer model (configuration "D")""" """VGG 16-layer model (configuration "D")
return VGG(make_layers(cfg['D']))
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['D']))
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg16']))
return model
def vgg16_bn(): def vgg16_bn():
...@@ -82,9 +129,16 @@ def vgg16_bn(): ...@@ -82,9 +129,16 @@ def vgg16_bn():
return VGG(make_layers(cfg['D'], batch_norm=True)) return VGG(make_layers(cfg['D'], batch_norm=True))
def vgg19(): def vgg19(pretrained=False):
"""VGG 19-layer model (configuration "E")""" """VGG 19-layer model (configuration "E")
return VGG(make_layers(cfg['E']))
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['E']))
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
return model
def vgg19_bn(): def vgg19_bn():
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment