train.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
import datetime
import os
import time
import torch
import torch.utils.data
from torch.utils.data.dataloader import default_collate
from torch import nn
import torchvision
import torchvision.datasets.video_utils
10
from torchvision import transforms as T
11
from torchvision.datasets.samplers import DistributedSampler, UniformClipSampler, RandomClipSampler
12
13

import utils
14

15
from scheduler import WarmupMultiStepLR
16
from transforms import ConvertBHWCtoBCHW, ConvertBCHWtoCBHW
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

try:
    from apex import amp
except ImportError:
    amp = None


def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, print_freq, apex=False):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
    metric_logger.add_meter('clips/s', utils.SmoothedValue(window_size=10, fmt='{value:.3f}'))

    header = 'Epoch: [{}]'.format(epoch)
    for video, target in metric_logger.log_every(data_loader, print_freq, header):
        start_time = time.time()
        video, target = video.to(device), target.to(device)
        output = model(video)
        loss = criterion(output, target)

        optimizer.zero_grad()
        if apex:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        optimizer.step()

        acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
        batch_size = video.shape[0]
        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
        metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
        metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
        metric_logger.meters['clips/s'].update(batch_size / (time.time() - start_time))
        lr_scheduler.step()


def evaluate(model, criterion, data_loader, device):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    with torch.no_grad():
        for video, target in metric_logger.log_every(data_loader, 100, header):
            video = video.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            output = model(video)
            loss = criterion(output, target)

            acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
            # FIXME need to take into account that the datasets
            # could have been padded in distributed setup
            batch_size = video.shape[0]
            metric_logger.update(loss=loss.item())
            metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
            metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()

    print(' * Clip Acc@1 {top1.global_avg:.3f} Clip Acc@5 {top5.global_avg:.3f}'
          .format(top1=metric_logger.acc1, top5=metric_logger.acc5))
    return metric_logger.acc1.global_avg


def _get_cache_path(filepath):
    import hashlib
    h = hashlib.sha1(filepath.encode()).hexdigest()
    cache_path = os.path.join("~", ".torch", "vision", "datasets", "kinetics", h[:10] + ".pt")
    cache_path = os.path.expanduser(cache_path)
    return cache_path


def collate_fn(batch):
    # remove audio from the batch
    batch = [(d[0], d[2]) for d in batch]
    return default_collate(batch)


def main(args):
95
96
97
    if args.apex and amp is None:
        raise RuntimeError("Failed to import apex. Please install apex from https://www.github.com/nvidia/apex "
                           "to enable mixed-precision training.")
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)
    print("torch version: ", torch.__version__)
    print("torchvision version: ", torchvision.__version__)

    device = torch.device(args.device)

    torch.backends.cudnn.benchmark = True

    # Data loading code
    print("Loading data")
113
114
    traindir = os.path.join(args.data_path, args.train_dir)
    valdir = os.path.join(args.data_path, args.val_dir)
115
116
117
118
119
120
121
    normalize = T.Normalize(mean=[0.43216, 0.394666, 0.37645],
                            std=[0.22803, 0.22145, 0.216989])

    print("Loading training data")
    st = time.time()
    cache_path = _get_cache_path(traindir)
    transform_train = torchvision.transforms.Compose([
122
123
        ConvertBHWCtoBCHW(),
        T.ConvertImageDtype(torch.float32),
124
125
126
        T.Resize((128, 171)),
        T.RandomHorizontalFlip(),
        normalize,
127
128
        T.RandomCrop((112, 112)),
        ConvertBCHWtoCBHW()
129
130
131
132
133
134
135
136
137
138
    ])

    if args.cache_dataset and os.path.exists(cache_path):
        print("Loading dataset_train from {}".format(cache_path))
        dataset, _ = torch.load(cache_path)
        dataset.transform = transform_train
    else:
        if args.distributed:
            print("It is recommended to pre-compute the dataset cache "
                  "on a single-gpu first, as it will be faster")
139
        dataset = torchvision.datasets.Kinetics400(
140
141
142
            traindir,
            frames_per_clip=args.clip_len,
            step_between_clips=1,
143
            transform=transform_train,
144
145
            frame_rate=15,
            extensions=('avi', 'mp4', )
146
147
148
149
150
151
152
153
154
155
156
157
        )
        if args.cache_dataset:
            print("Saving dataset_train to {}".format(cache_path))
            utils.mkdir(os.path.dirname(cache_path))
            utils.save_on_master((dataset, traindir), cache_path)

    print("Took", time.time() - st)

    print("Loading validation data")
    cache_path = _get_cache_path(valdir)

    transform_test = torchvision.transforms.Compose([
158
159
        ConvertBHWCtoBCHW(),
        T.ConvertImageDtype(torch.float32),
160
161
        T.Resize((128, 171)),
        normalize,
162
163
        T.CenterCrop((112, 112)),
        ConvertBCHWtoCBHW()
164
165
166
167
168
169
170
171
172
173
    ])

    if args.cache_dataset and os.path.exists(cache_path):
        print("Loading dataset_test from {}".format(cache_path))
        dataset_test, _ = torch.load(cache_path)
        dataset_test.transform = transform_test
    else:
        if args.distributed:
            print("It is recommended to pre-compute the dataset cache "
                  "on a single-gpu first, as it will be faster")
174
        dataset_test = torchvision.datasets.Kinetics400(
175
176
177
            valdir,
            frames_per_clip=args.clip_len,
            step_between_clips=1,
178
            transform=transform_test,
179
180
            frame_rate=15,
            extensions=('avi', 'mp4',)
181
182
183
184
185
186
187
        )
        if args.cache_dataset:
            print("Saving dataset_test to {}".format(cache_path))
            utils.mkdir(os.path.dirname(cache_path))
            utils.save_on_master((dataset_test, valdir), cache_path)

    print("Creating data loaders")
188
    train_sampler = RandomClipSampler(dataset.video_clips, args.clips_per_video)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    test_sampler = UniformClipSampler(dataset_test.video_clips, args.clips_per_video)
    if args.distributed:
        train_sampler = DistributedSampler(train_sampler)
        test_sampler = DistributedSampler(test_sampler)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers,
        pin_memory=True, collate_fn=collate_fn)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=args.batch_size,
        sampler=test_sampler, num_workers=args.workers,
        pin_memory=True, collate_fn=collate_fn)

    print("Creating model")
205
    model = torchvision.models.video.__dict__[args.model](pretrained=args.pretrained)
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    model.to(device)
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    criterion = nn.CrossEntropyLoss()

    lr = args.lr * args.world_size
    optimizer = torch.optim.SGD(
        model.parameters(), lr=lr, momentum=args.momentum, weight_decay=args.weight_decay)

    if args.apex:
        model, optimizer = amp.initialize(model, optimizer,
                                          opt_level=args.apex_opt_level
                                          )

    # convert scheduler to be per iteration, not per epoch, for warmup that lasts
    # between different epochs
    warmup_iters = args.lr_warmup_epochs * len(data_loader)
    lr_milestones = [len(data_loader) * m for m in args.lr_milestones]
    lr_scheduler = WarmupMultiStepLR(
        optimizer, milestones=lr_milestones, gamma=args.lr_gamma,
        warmup_iters=warmup_iters, warmup_factor=1e-5)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        args.start_epoch = checkpoint['epoch'] + 1

    if args.test_only:
        evaluate(model, criterion, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader,
                        device, epoch, args.print_freq, args.apex)
        evaluate(model, criterion, data_loader_test, device=device)
        if args.output_dir:
            checkpoint = {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
                'epoch': epoch,
                'args': args}
            utils.save_on_master(
                checkpoint,
                os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
            utils.save_on_master(
                checkpoint,
                os.path.join(args.output_dir, 'checkpoint.pth'))

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


def parse_args():
    import argparse
274
    parser = argparse.ArgumentParser(description='PyTorch Video Classification Training')
275
276

    parser.add_argument('--data-path', default='/datasets01_101/kinetics/070618/', help='dataset')
277
278
    parser.add_argument('--train-dir', default='train_avi-480p', help='name of train dir')
    parser.add_argument('--val-dir', default='val_avi-480p', help='name of val dir')
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    parser.add_argument('--model', default='r2plus1d_18', help='model')
    parser.add_argument('--device', default='cuda', help='device')
    parser.add_argument('--clip-len', default=16, type=int, metavar='N',
                        help='number of frames per clip')
    parser.add_argument('--clips-per-video', default=5, type=int, metavar='N',
                        help='maximum number of clips per video to consider')
    parser.add_argument('-b', '--batch-size', default=24, type=int)
    parser.add_argument('--epochs', default=45, type=int, metavar='N',
                        help='number of total epochs to run')
    parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
                        help='number of data loading workers (default: 16)')
    parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--lr-milestones', nargs='+', default=[20, 30, 40], type=int, help='decrease lr on milestones')
    parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
    parser.add_argument('--lr-warmup-epochs', default=10, type=int, help='number of warmup epochs')
    parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument(
        "--cache-dataset",
        dest="cache_dataset",
        help="Cache the datasets for quicker initialization. It also serializes the transforms",
        action="store_true",
    )
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )

    # Mixed precision training parameters
    parser.add_argument('--apex', action='store_true',
                        help='Use apex for mixed precision training')
    parser.add_argument('--apex-opt-level', default='O1', type=str,
                        help='For apex mixed precision training'
                             'O0 for FP32 training, O1 for mixed precision training.'
                             'For further detail, see https://github.com/NVIDIA/apex/tree/master/examples/imagenet'
                        )

    # distributed training parameters
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')

    args = parser.parse_args()

    return args


if __name__ == "__main__":
    args = parse_args()
    main(args)