densenet.py 9.76 KB
Newer Older
1
import re
Geoff Pleiss's avatar
Geoff Pleiss committed
2
3
4
5
6
7
8
9
10
11
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from collections import OrderedDict

__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']


model_urls = {
12
13
14
15
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
Geoff Pleiss's avatar
Geoff Pleiss committed
16
17
18
19
20
}


def densenet121(pretrained=False, **kwargs):
    r"""Densenet-121 model from
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
21
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Geoff Pleiss's avatar
Geoff Pleiss committed
22
23
24
25

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
26
27
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
28
    if pretrained:
29
30
31
32
33
34
35
36
37
38
39
40
41
42
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
Geoff Pleiss's avatar
Geoff Pleiss committed
43
44
45
46
47
    return model


def densenet169(pretrained=False, **kwargs):
    r"""Densenet-169 model from
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
48
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Geoff Pleiss's avatar
Geoff Pleiss committed
49
50
51
52

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
53
54
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
55
    if pretrained:
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet169'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
Geoff Pleiss's avatar
Geoff Pleiss committed
70
71
72
73
74
    return model


def densenet201(pretrained=False, **kwargs):
    r"""Densenet-201 model from
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
75
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Geoff Pleiss's avatar
Geoff Pleiss committed
76
77
78
79

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
80
81
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
82
    if pretrained:
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet201'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
Geoff Pleiss's avatar
Geoff Pleiss committed
97
98
99
100
    return model


def densenet161(pretrained=False, **kwargs):
Furiously Curious's avatar
Furiously Curious committed
101
    r"""Densenet-161 model from
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
102
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Geoff Pleiss's avatar
Geoff Pleiss committed
103
104
105
106

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
107
108
    model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
                     **kwargs)
Geoff Pleiss's avatar
Geoff Pleiss committed
109
    if pretrained:
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet161'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
Geoff Pleiss's avatar
Geoff Pleiss committed
124
125
126
127
128
129
    return model


class _DenseLayer(nn.Sequential):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
130
131
132
        self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
Geoff Pleiss's avatar
Geoff Pleiss committed
133
                        growth_rate, kernel_size=1, stride=1, bias=False)),
134
135
136
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
Geoff Pleiss's avatar
Geoff Pleiss committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
                        kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
            self.add_module('denselayer%d' % (i + 1), layer)


class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
167
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Geoff Pleiss's avatar
Geoff Pleiss committed
168
169
170
171
172
173
174
175
176
177

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
    """
178

Geoff Pleiss's avatar
Geoff Pleiss committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
                 num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):

        super(DenseNet, self).__init__()

        # First convolution
        self.features = nn.Sequential(OrderedDict([
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ('norm0', nn.BatchNorm2d(num_init_features)),
            ('relu0', nn.ReLU(inplace=True)),
            ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
        ]))

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
                                bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
200
                trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
Geoff Pleiss's avatar
Geoff Pleiss committed
201
                self.features.add_module('transition%d' % (i + 1), trans)
202
                num_features = num_features // 2
Geoff Pleiss's avatar
Geoff Pleiss committed
203
204
205
206
207
208
209

        # Final batch norm
        self.features.add_module('norm5', nn.BatchNorm2d(num_features))

        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

Sri Krishna's avatar
Sri Krishna committed
210
211
212
        # Official init from torch repo.
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
213
                nn.init.kaiming_normal_(m.weight)
Sri Krishna's avatar
Sri Krishna committed
214
            elif isinstance(m, nn.BatchNorm2d):
215
216
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
Sri Krishna's avatar
Sri Krishna committed
217
            elif isinstance(m, nn.Linear):
218
                nn.init.constant_(m.bias, 0)
Sri Krishna's avatar
Sri Krishna committed
219

Geoff Pleiss's avatar
Geoff Pleiss committed
220
221
222
    def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
223
        out = F.avg_pool2d(out, kernel_size=7, stride=1).view(features.size(0), -1)
Geoff Pleiss's avatar
Geoff Pleiss committed
224
225
        out = self.classifier(out)
        return out