poolers.py 6.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn

from torchvision.ops import roi_align
from torchvision.ops.boxes import box_area


class LevelMapper(object):
    """Determine which FPN level each RoI in a set of RoIs should map to based
    on the heuristic in the FPN paper.
13
14
15
16
17
18
19

    Arguments:
        k_min (int)
        k_max (int)
        canonical_scale (int)
        canonical_level (int)
        eps (float)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    """

    def __init__(self, k_min, k_max, canonical_scale=224, canonical_level=4, eps=1e-6):
        self.k_min = k_min
        self.k_max = k_max
        self.s0 = canonical_scale
        self.lvl0 = canonical_level
        self.eps = eps

    def __call__(self, boxlists):
        """
        Arguments:
            boxlists (list[BoxList])
        """
        # Compute level ids
        s = torch.sqrt(torch.cat([box_area(boxlist) for boxlist in boxlists]))

        # Eqn.(1) in FPN paper
        target_lvls = torch.floor(self.lvl0 + torch.log2(s / self.s0 + self.eps))
        target_lvls = torch.clamp(target_lvls, min=self.k_min, max=self.k_max)
        return target_lvls.to(torch.int64) - self.k_min


class MultiScaleRoIAlign(nn.Module):
    """
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.

    It infers the scale of the pooling via the heuristics present in the FPN paper.

    Arguments:
        featmap_names (List[str]): the names of the feature maps that will be used
            for the pooling.
        output_size (List[Tuple[int, int]] or List[int]): output size for the pooled region
        sampling_ratio (int): sampling ratio for ROIAlign

    Examples::

        >>> m = torchvision.ops.MultiScaleRoIAlign(['feat1', 'feat3'], 3, 2)
        >>> i = OrderedDict()
        >>> i['feat1'] = torch.rand(1, 5, 64, 64)
        >>> i['feat2'] = torch.rand(1, 5, 32, 32)  # this feature won't be used in the pooling
        >>> i['feat3'] = torch.rand(1, 5, 16, 16)
        >>> # create some random bounding boxes
        >>> boxes = torch.rand(6, 4) * 256; boxes[:, 2:] += boxes[:, :2]
        >>> # original image size, before computing the feature maps
        >>> image_sizes = [(512, 512)]
        >>> output = m(i, [boxes], image_sizes)
        >>> print(output.shape)
        >>> torch.Size([6, 5, 3, 3])

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    """

    def __init__(self, featmap_names, output_size, sampling_ratio):
        super(MultiScaleRoIAlign, self).__init__()
        if isinstance(output_size, int):
            output_size = (output_size, output_size)
        self.featmap_names = featmap_names
        self.sampling_ratio = sampling_ratio
        self.output_size = tuple(output_size)
        self.scales = None
        self.map_levels = None

    def convert_to_roi_format(self, boxes):
        concat_boxes = torch.cat(boxes, dim=0)
        device, dtype = concat_boxes.device, concat_boxes.dtype
        ids = torch.cat(
            [
                torch.full((len(b), 1), i, dtype=dtype, device=device)
                for i, b in enumerate(boxes)
            ],
            dim=0,
        )
        rois = torch.cat([ids, concat_boxes], dim=1)
        return rois

    def infer_scale(self, feature, original_size):
        # assumption: the scale is of the form 2 ** (-k), with k integer
        size = feature.shape[-2:]
        possible_scales = []
        for s1, s2 in zip(size, original_size):
            approx_scale = float(s1) / s2
            scale = 2 ** torch.tensor(approx_scale).log2().round().item()
            possible_scales.append(scale)
        assert possible_scales[0] == possible_scales[1]
        return possible_scales[0]

    def setup_scales(self, features, image_shapes):
        original_input_shape = tuple(max(s) for s in zip(*image_shapes))
        scales = [self.infer_scale(feat, original_input_shape) for feat in features]
        # get the levels in the feature map by leveraging the fact that the network always
        # downsamples by a factor of 2 at each level.
        lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item()
        lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item()
        self.scales = scales
        self.map_levels = LevelMapper(lvl_min, lvl_max)

    def forward(self, x, boxes, image_shapes):
        """
        Arguments:
119
120
121
122
123
124
125
126
            x (OrderedDict[Tensor]): feature maps for each level. They are assumed to have
                all the same number of channels, but they can have different sizes.
            boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
                [x0, y0, x1, y1] format and in the image reference size, not the feature map
                reference.
            image_shapes (List[Tuple[height, width]]): the sizes of each image before they
                have been fed to a CNN to obtain feature maps. This allows us to infer the
                scale factor for each one of the levels to be pooled.
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        Returns:
            result (Tensor)
        """
        x = [v for k, v in x.items() if k in self.featmap_names]
        num_levels = len(x)
        rois = self.convert_to_roi_format(boxes)
        if self.scales is None:
            self.setup_scales(x, image_shapes)

        if num_levels == 1:
            return roi_align(
                x[0], rois,
                output_size=self.output_size,
                spatial_scale=self.scales[0],
                sampling_ratio=self.sampling_ratio
            )

        levels = self.map_levels(boxes)

        num_rois = len(rois)
        num_channels = x[0].shape[1]

        dtype, device = x[0].dtype, x[0].device
        result = torch.zeros(
            (num_rois, num_channels,) + self.output_size,
            dtype=dtype,
            device=device,
        )

        for level, (per_level_feature, scale) in enumerate(zip(x, self.scales)):
            idx_in_level = torch.nonzero(levels == level).squeeze(1)
            rois_per_level = rois[idx_in_level]

            result[idx_in_level] = roi_align(
                per_level_feature, rois_per_level,
                output_size=self.output_size,
                spatial_scale=scale, sampling_ratio=self.sampling_ratio
            )

        return result