ROIAlign.h 3.8 KB
Newer Older
1
2
#pragma once

3
#include "cpu/vision_cpu.h"
4
5

#ifdef WITH_CUDA
6
#include "cuda/vision_cuda.h"
7
8
9
10
11
12
#endif

// Interface for Python
at::Tensor ROIAlign_forward(
    const at::Tensor& input, // Input feature map.
    const at::Tensor& rois, // List of ROIs to pool over.
13
    const double spatial_scale, // The scale of the image features. ROIs will be
14
    // scaled to this.
15
16
17
    const int64_t pooled_height, // The height of the pooled feature map.
    const int64_t pooled_width, // The width of the pooled feature
    const int64_t sampling_ratio) // The number of points to sample in each bin
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// along each axis.
{
  if (input.type().is_cuda()) {
#ifdef WITH_CUDA
    return ROIAlign_forward_cuda(
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio);
#else
    AT_ERROR("Not compiled with GPU support");
#endif
  }
  return ROIAlign_forward_cpu(
      input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio);
}

at::Tensor ROIAlign_backward(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int batch_size,
    const int channels,
    const int height,
    const int width,
    const int sampling_ratio) {
  if (grad.type().is_cuda()) {
#ifdef WITH_CUDA
    return ROIAlign_backward_cuda(
        grad,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width,
        sampling_ratio);
#else
    AT_ERROR("Not compiled with GPU support");
#endif
  }
  return ROIAlign_backward_cpu(
      grad,
      rois,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width,
      sampling_ratio);
}
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

using namespace at;
using torch::Tensor;
using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class ROIAlignFunction : public torch::autograd::Function<ROIAlignFunction> {
 public:
  static variable_list forward(
      AutogradContext* ctx,
      Variable input,
      Variable rois,
      const double spatial_scale,
      const int64_t pooled_height,
      const int64_t pooled_width,
      const int64_t sampling_ratio) {
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["sampling_ratio"] = sampling_ratio;
    ctx->saved_data["input_shape"] = input.sizes();
    ctx->save_for_backward({rois});
    auto result = ROIAlign_forward(
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio);
    return {result};
  }

  static variable_list backward(
      AutogradContext* ctx,
      variable_list grad_output) {
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
    auto grad_in = ROIAlign_backward(
        grad_output[0],
        rois,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3],
        ctx->saved_data["sampling_ratio"].toInt());
    return {
        grad_in, Variable(), Variable(), Variable(), Variable(), Variable()};
  }
};

Tensor roi_align(
    const Tensor& input,
    const Tensor& rois,
    const double spatial_scale,
    const int64_t pooled_height,
    const int64_t pooled_width,
    const int64_t sampling_ratio) {
  return ROIAlignFunction::apply(
      input,
      rois,
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio)[0];
}