_datapoint.py 6.23 KB
Newer Older
1
2
from __future__ import annotations

3
from typing import Any, Callable, Dict, Mapping, Optional, Sequence, Tuple, Type, TypeVar, Union
Philip Meier's avatar
Philip Meier committed
4
5

import torch
6
from torch._C import DisableTorchFunctionSubclass
7
from torch.types import _device, _dtype, _size
Philip Meier's avatar
Philip Meier committed
8

9

10
D = TypeVar("D", bound="Datapoint")
11
12


13
class Datapoint(torch.Tensor):
14
15
16
17
18
19
20
    """[Beta] Base class for all datapoints.

    You probably don't want to use this class unless you're defining your own
    custom Datapoints. See
    :ref:`sphx_glr_auto_examples_plot_custom_datapoints.py` for details.
    """

21
22
    @staticmethod
    def _to_tensor(
23
24
        data: Any,
        dtype: Optional[torch.dtype] = None,
25
        device: Optional[Union[torch.device, str, int]] = None,
26
        requires_grad: Optional[bool] = None,
27
    ) -> torch.Tensor:
28
29
        if requires_grad is None:
            requires_grad = data.requires_grad if isinstance(data, torch.Tensor) else False
30
        return torch.as_tensor(data, dtype=dtype, device=device).requires_grad_(requires_grad)
Philip Meier's avatar
Philip Meier committed
31

32
    @classmethod
33
    def wrap_like(cls: Type[D], other: D, tensor: torch.Tensor) -> D:
34
        return tensor.as_subclass(cls)
Philip Meier's avatar
Philip Meier committed
35

36
    _NO_WRAPPING_EXCEPTIONS = {
37
38
        torch.Tensor.clone: lambda cls, input, output: cls.wrap_like(input, output),
        torch.Tensor.to: lambda cls, input, output: cls.wrap_like(input, output),
39
        torch.Tensor.detach: lambda cls, input, output: cls.wrap_like(input, output),
40
41
42
43
44
        # We don't need to wrap the output of `Tensor.requires_grad_`, since it is an inplace operation and thus
        # retains the type automatically
        torch.Tensor.requires_grad_: lambda cls, input, output: output,
    }

Philip Meier's avatar
Philip Meier committed
45
46
47
48
49
50
51
52
    @classmethod
    def __torch_function__(
        cls,
        func: Callable[..., torch.Tensor],
        types: Tuple[Type[torch.Tensor], ...],
        args: Sequence[Any] = (),
        kwargs: Optional[Mapping[str, Any]] = None,
    ) -> torch.Tensor:
53
54
55
56
57
58
59
        """For general information about how the __torch_function__ protocol works,
        see https://pytorch.org/docs/stable/notes/extending.html#extending-torch

        TL;DR: Every time a PyTorch operator is called, it goes through the inputs and looks for the
        ``__torch_function__`` method. If one is found, it is invoked with the operator as ``func`` as well as the
        ``args`` and ``kwargs`` of the original call.

60
        The default behavior of :class:`~torch.Tensor`'s is to retain a custom tensor type. For the :class:`Datapoint`
61
62
        use case, this has two downsides:

63
        1. Since some :class:`Datapoint`'s require metadata to be constructed, the default wrapping, i.e.
64
65
66
           ``return cls(func(*args, **kwargs))``, will fail for them.
        2. For most operations, there is no way of knowing if the input type is still valid for the output.

67
        For these reasons, the automatic output wrapping is turned off for most operators. The only exceptions are
68
        listed in :attr:`Datapoint._NO_WRAPPING_EXCEPTIONS`
69
        """
70
71
72
73
74
75
        # Since super().__torch_function__ has no hook to prevent the coercing of the output into the input type, we
        # need to reimplement the functionality.

        if not all(issubclass(cls, t) for t in types):
            return NotImplemented

76
        with DisableTorchFunctionSubclass():
77
            output = func(*args, **kwargs or dict())
Philip Meier's avatar
Philip Meier committed
78

79
80
81
82
            wrapper = cls._NO_WRAPPING_EXCEPTIONS.get(func)
            # Apart from `func` needing to be an exception, we also require the primary operand, i.e. `args[0]`, to be
            # an instance of the class that `__torch_function__` was invoked on. The __torch_function__ protocol will
            # invoke this method on *all* types involved in the computation by walking the MRO upwards. For example,
83
84
85
            # `torch.Tensor(...).to(datapoints.Image(...))` will invoke `datapoints.Image.__torch_function__` with
            # `args = (torch.Tensor(), datapoints.Image())` first. Without this guard, the original `torch.Tensor` would
            # be wrapped into a `datapoints.Image`.
86
            if wrapper and isinstance(args[0], cls):
87
                return wrapper(cls, args[0], output)
88
89
90
91

            # Inplace `func`'s, canonically identified with a trailing underscore in their name like `.add_(...)`,
            # will retain the input type. Thus, we need to unwrap here.
            if isinstance(output, cls):
92
                return output.as_subclass(torch.Tensor)
93

94
            return output
95

96
97
98
99
100
101
    def _make_repr(self, **kwargs: Any) -> str:
        # This is a poor man's implementation of the proposal in https://github.com/pytorch/pytorch/issues/76532.
        # If that ever gets implemented, remove this in favor of the solution on the `torch.Tensor` class.
        extra_repr = ", ".join(f"{key}={value}" for key, value in kwargs.items())
        return f"{super().__repr__()[:-1]}, {extra_repr})"

102
103
104
105
    # Add properties for common attributes like shape, dtype, device, ndim etc
    # this way we return the result without passing into __torch_function__
    @property
    def shape(self) -> _size:  # type: ignore[override]
106
        with DisableTorchFunctionSubclass():
107
108
109
110
            return super().shape

    @property
    def ndim(self) -> int:  # type: ignore[override]
111
        with DisableTorchFunctionSubclass():
112
113
114
115
            return super().ndim

    @property
    def device(self, *args: Any, **kwargs: Any) -> _device:  # type: ignore[override]
116
        with DisableTorchFunctionSubclass():
117
118
119
120
            return super().device

    @property
    def dtype(self) -> _dtype:  # type: ignore[override]
121
        with DisableTorchFunctionSubclass():
122
123
            return super().dtype

124
125
126
127
128
    def __deepcopy__(self: D, memo: Dict[int, Any]) -> D:
        # We need to detach first, since a plain `Tensor.clone` will be part of the computation graph, which does
        # *not* happen for `deepcopy(Tensor)`. A side-effect from detaching is that the `Tensor.requires_grad`
        # attribute is cleared, so we need to refill it before we return.
        # Note: We don't explicitly handle deep-copying of the metadata here. The only metadata we currently have is
Philip Meier's avatar
Philip Meier committed
129
        # `BoundingBoxes.format` and `BoundingBoxes.canvas_size`, which are immutable and thus implicitly deep-copied by
130
        # `BoundingBoxes.clone()`.
131
        return self.detach().clone().requires_grad_(self.requires_grad)  # type: ignore[return-value]