ROIAlign_cpu.cpp 14 KB
Newer Older
1
#include <ATen/TensorUtils.h>
gslotman's avatar
gslotman committed
2
#include "vision_cpu.h"
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

// implementation taken from Caffe2
template <typename T>
struct PreCalc {
  int pos1;
  int pos2;
  int pos3;
  int pos4;
  T w1;
  T w2;
  T w3;
  T w4;
};

template <typename T>
void pre_calc_for_bilinear_interpolate(
19
20
21
22
23
24
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int iy_upper,
    int ix_upper,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    T roi_start_h,
    T roi_start_w,
    T bin_size_h,
    T bin_size_w,
    int roi_bin_grid_h,
    int roi_bin_grid_w,
    std::vector<PreCalc<T>>& pre_calc) {
  int pre_calc_index = 0;
  for (int ph = 0; ph < pooled_height; ph++) {
    for (int pw = 0; pw < pooled_width; pw++) {
      for (int iy = 0; iy < iy_upper; iy++) {
        const T yy = roi_start_h + ph * bin_size_h +
            static_cast<T>(iy + .5f) * bin_size_h /
                static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
        for (int ix = 0; ix < ix_upper; ix++) {
          const T xx = roi_start_w + pw * bin_size_w +
              static_cast<T>(ix + .5f) * bin_size_w /
                  static_cast<T>(roi_bin_grid_w);

          T x = xx;
          T y = yy;
          // deal with: inverse elements are out of feature map boundary
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
            // empty
            PreCalc<T> pc;
            pc.pos1 = 0;
            pc.pos2 = 0;
            pc.pos3 = 0;
            pc.pos4 = 0;
            pc.w1 = 0;
            pc.w2 = 0;
            pc.w3 = 0;
            pc.w4 = 0;
            pre_calc[pre_calc_index] = pc;
            pre_calc_index += 1;
            continue;
          }

          if (y <= 0) {
            y = 0;
          }
          if (x <= 0) {
            x = 0;
          }

          int y_low = (int)y;
          int x_low = (int)x;
          int y_high;
          int x_high;

          if (y_low >= height - 1) {
            y_high = y_low = height - 1;
            y = (T)y_low;
          } else {
            y_high = y_low + 1;
          }

          if (x_low >= width - 1) {
            x_high = x_low = width - 1;
            x = (T)x_low;
          } else {
            x_high = x_low + 1;
          }

          T ly = y - y_low;
          T lx = x - x_low;
          T hy = 1. - ly, hx = 1. - lx;
          T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

          // save weights and indeces
          PreCalc<T> pc;
          pc.pos1 = y_low * width + x_low;
          pc.pos2 = y_low * width + x_high;
          pc.pos3 = y_high * width + x_low;
          pc.pos4 = y_high * width + x_high;
          pc.w1 = w1;
          pc.w2 = w2;
          pc.w3 = w3;
          pc.w4 = w4;
          pre_calc[pre_calc_index] = pc;

          pre_calc_index += 1;
        }
      }
    }
  }
}

template <typename T>
void ROIAlignForward(
115
    int nthreads,
116
117
    const T* input,
    const T& spatial_scale,
118
119
120
121
122
123
124
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
125
126
127
128
129
130
131
132
133
134
135
136
137
    const T* rois,
    T* output) {
  int n_rois = nthreads / channels / pooled_width / pooled_height;
  // (n, c, ph, pw) is an element in the pooled output
  // can be parallelized using omp
  // #pragma omp parallel for num_threads(32)
  for (int n = 0; n < n_rois; n++) {
    int index_n = n * channels * pooled_width * pooled_height;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
138
139
140
141
142
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
143

144
145
146
147
148
149
150
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = std::max(roi_width, (T)1.);
      roi_height = std::max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
151

152
153
154
155
156
157
158
159
160
161
162
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
AhnDW's avatar
AhnDW committed
163
164
    // When the grid is empty, output zeros.
    const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

    // we want to precalculate indeces and weights shared by all chanels,
    // this is the key point of optimiation
    std::vector<PreCalc<T>> pre_calc(
        roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
    pre_calc_for_bilinear_interpolate(
        height,
        width,
        pooled_height,
        pooled_width,
        roi_bin_grid_h,
        roi_bin_grid_w,
        roi_start_h,
        roi_start_w,
        bin_size_h,
        bin_size_w,
        roi_bin_grid_h,
        roi_bin_grid_w,
        pre_calc);

    for (int c = 0; c < channels; c++) {
      int index_n_c = index_n + c * pooled_width * pooled_height;
      const T* offset_input =
          input + (roi_batch_ind * channels + c) * height * width;
      int pre_calc_index = 0;

      for (int ph = 0; ph < pooled_height; ph++) {
        for (int pw = 0; pw < pooled_width; pw++) {
          int index = index_n_c + ph * pooled_width + pw;

          T output_val = 0.;
          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
              PreCalc<T> pc = pre_calc[pre_calc_index];
              output_val += pc.w1 * offset_input[pc.pos1] +
                  pc.w2 * offset_input[pc.pos2] +
                  pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4];

              pre_calc_index += 1;
            }
          }
          output_val /= count;

          output[index] = output_val;
        } // for pw
      } // for ph
    } // for c
  } // for n
}

template <typename T>
void bilinear_interpolate_gradient(
217
218
    int height,
    int width,
219
220
221
222
223
224
225
226
227
228
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
229
    int index /* index for debug only*/) {
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
}

template <class T>
inline void add(T* address, const T& val) {
  *address += val;
}

template <typename T>
void ROIAlignBackward(
281
    int nthreads,
282
283
    const T* grad_output,
    const T& spatial_scale,
284
285
286
287
288
289
290
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
291
292
    T* grad_input,
    const T* rois,
293
294
295
296
    int n_stride,
    int c_stride,
    int h_stride,
    int w_stride) {
297
298
299
300
301
302
303
304
305
306
307
  for (int index = 0; index < nthreads; index++) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
308
309
310
311
312
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
313

314
315
316
317
318
319
320
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = std::max(roi_width, (T)1.);
      roi_height = std::max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_grad_input =
        grad_input + ((roi_batch_ind * channels + c) * height * width);

    int output_offset = n * n_stride + c * c_stride;
    const T* offset_grad_output = grad_output + output_offset;
    const T grad_output_this_bin =
        offset_grad_output[ph * h_stride + pw * w_stride];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          // atomic add is not needed for now since it is single threaded
          add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
          add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
          add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
          add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // for
} // ROIAlignBackward

at::Tensor ROIAlign_forward_cpu(
    const at::Tensor& input,
    const at::Tensor& rois,
390
391
392
393
394
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    bool aligned) {
vfdev's avatar
vfdev committed
395
396
397
  TORCH_CHECK(input.device().is_cpu(), "input must be a CPU tensor");
  TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
  TORCH_CHECK(rois.size(1) == 5, "rois must have shape as Tensor[K, 5]");
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIAlign_forward_cpu";
  at::checkAllSameType(c, {input_t, rois_t});

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());

  auto output_size = num_rois * pooled_height * pooled_width * channels;

  if (output.numel() == 0)
    return output;

417
  auto input_ = input.contiguous(), rois_ = rois.contiguous();
418
419
420
421
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "ROIAlign_forward", [&] {
        ROIAlignForward<scalar_t>(
            output_size,
422
            input_.data_ptr<scalar_t>(),
423
424
425
426
427
428
429
430
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
431
            rois_.data_ptr<scalar_t>(),
432
433
            output.data_ptr<scalar_t>());
      });
434
435
436
437
438
439
  return output;
}

at::Tensor ROIAlign_backward_cpu(
    const at::Tensor& grad,
    const at::Tensor& rois,
440
441
442
443
444
445
446
447
448
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width,
    int64_t sampling_ratio,
    bool aligned) {
vfdev's avatar
vfdev committed
449
450
  TORCH_CHECK(grad.device().is_cpu(), "grad must be a CPU tensor");
  TORCH_CHECK(rois.device().is_cpu(), "rois must be a CPU tensor");
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIAlign_backward_cpu";
  at::checkAllSameType(c, {grad_t, rois_t});

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    return grad_input;
  }

  // get stride values to ensure indexing into gradients is correct.
  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

471
  auto rois_ = rois.contiguous();
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      grad.scalar_type(), "ROIAlign_forward", [&] {
        ROIAlignBackward<scalar_t>(
            grad.numel(),
            grad.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
            grad_input.data_ptr<scalar_t>(),
486
            rois_.data_ptr<scalar_t>(),
487
488
489
490
491
            n_stride,
            c_stride,
            h_stride,
            w_stride);
      });
492
493
  return grad_input;
}