cityscapes.py 6.42 KB
Newer Older
Michael Kösel's avatar
Michael Kösel committed
1
2
3
4
5
6
7
8
9
import json
import os

import torch.utils.data as data
from PIL import Image


class Cityscapes(data.Dataset):
    """`Cityscapes <http://www.cityscapes-dataset.com/>`_ Dataset.
10

Michael Kösel's avatar
Michael Kösel committed
11
12
13
14
15
16
    Args:
        root (string): Root directory of dataset where directory ``leftImg8bit``
            and ``gtFine`` or ``gtCoarse`` are located.
        split (string, optional): The image split to use, ``train``, ``test`` or ``val`` if mode="gtFine"
            otherwise ``train``, ``train_extra`` or ``val``
        mode (string, optional): The quality mode to use, ``gtFine`` or ``gtCoarse``
17
18
        target_type (string or list, optional): Type of target to use, ``instance``, ``semantic``, ``polygon``
            or ``color``. Can also be a list to output a tuple with all specified target types.
Michael Kösel's avatar
Michael Kösel committed
19
20
21
22
        transform (callable, optional): A function/transform that takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

    Examples:

        Get semantic segmentation target

        .. code-block:: python
            dataset = Cityscapes('./data/cityscapes', split='train', mode='gtFine',
                                 target_type='semantic')

            img, smnt = dataset[0]

        Get multiple targets

        .. code-block:: python
            dataset = Cityscapes('./data/cityscapes', split='train', mode='gtFine',
                                 target_type=['instance', 'color', 'polygon'])

            img, (inst, col, poly) = dataset[0]

        Validate on the "gtCoarse" set

        .. code-block:: python
            dataset = Cityscapes('./data/cityscapes', split='val', mode='gtCoarse',
                                 target_type='semantic')

            img, smnt = dataset[0]
Michael Kösel's avatar
Michael Kösel committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    """

    def __init__(self, root, split='train', mode='gtFine', target_type='instance',
                 transform=None, target_transform=None):
        self.root = os.path.expanduser(root)
        self.images_dir = os.path.join(self.root, 'leftImg8bit', split)
        self.targets_dir = os.path.join(self.root, mode, split)
        self.transform = transform
        self.target_transform = target_transform
        self.target_type = target_type
        self.split = split
        self.mode = mode
        self.images = []
        self.targets = []

        if mode not in ['gtFine', 'gtCoarse']:
            raise ValueError('Invalid mode! Please use mode="gtFine" or mode="gtCoarse"')

        if mode == 'gtFine' and split not in ['train', 'test', 'val']:
            raise ValueError('Invalid split for mode "gtFine"! Please use split="train", split="test"'
                             ' or split="val"')
        elif mode == 'gtCoarse' and split not in ['train', 'train_extra', 'val']:
            raise ValueError('Invalid split for mode "gtCoarse"! Please use split="train", split="train_extra"'
                             ' or split="val"')

74
75
76
77
78
79
        if not isinstance(target_type, list):
            self.target_type = [target_type]

        if not all(t in ['instance', 'semantic', 'polygon', 'color'] for t in self.target_type):
            raise ValueError('Invalid value for "target_type"! Valid values are: "instance", "semantic", "polygon"'
                             ' or "color"')
Michael Kösel's avatar
Michael Kösel committed
80
81
82
83
84
85
86
87
88

        if not os.path.isdir(self.images_dir) or not os.path.isdir(self.targets_dir):
            raise RuntimeError('Dataset not found or incomplete. Please make sure all required folders for the'
                               ' specified "split" and "mode" are inside the "root" directory')

        for city in os.listdir(self.images_dir):
            img_dir = os.path.join(self.images_dir, city)
            target_dir = os.path.join(self.targets_dir, city)
            for file_name in os.listdir(img_dir):
89
90
91
92
93
                target_types = []
                for t in self.target_type:
                    target_name = '{}_{}'.format(file_name.split('_leftImg8bit')[0],
                                                 self._get_target_suffix(self.mode, t))
                    target_types.append(os.path.join(target_dir, target_name))
Michael Kösel's avatar
Michael Kösel committed
94
95

                self.images.append(os.path.join(img_dir, file_name))
96
                self.targets.append(target_types)
Michael Kösel's avatar
Michael Kösel committed
97
98
99
100
101
102

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
103
104
            tuple: (image, target) where target is a tuple of all target types if target_type is a list with more
            than one item. Otherwise target is a json object if target_type="polygon", else the image segmentation.
Michael Kösel's avatar
Michael Kösel committed
105
106
107
108
        """

        image = Image.open(self.images[index]).convert('RGB')

109
110
111
112
113
114
115
116
117
118
        targets = []
        for i, t in enumerate(self.target_type):
            if t == 'polygon':
                target = self._load_json(self.targets[index][i])
            else:
                target = Image.open(self.targets[index][i])

            targets.append(target)

        target = tuple(targets) if len(targets) > 1 else targets[0]
Michael Kösel's avatar
Michael Kösel committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

        if self.transform:
            image = self.transform(image)

        if self.target_transform:
            target = self.target_transform(target)

        return image, target

    def __len__(self):
        return len(self.images)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Split: {}\n'.format(self.split)
        fmt_str += '    Mode: {}\n'.format(self.mode)
        fmt_str += '    Type: {}\n'.format(self.target_type)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

    def _load_json(self, path):
        with open(path, 'r') as file:
            data = json.load(file)
        return data

    def _get_target_suffix(self, mode, target_type):
        if target_type == 'instance':
            return '{}_instanceIds.png'.format(mode)
        elif target_type == 'semantic':
            return '{}_labelIds.png'.format(mode)
        elif target_type == 'color':
            return '{}_color.png'.format(mode)
        else:
            return '{}_polygons.json'.format(mode)