mobilenet.cpp 4.74 KB
Newer Older
Shahriar's avatar
Shahriar committed
1
2
3
4
5
6
7
8
#include "mobilenet.h"

#include "modelsimpl.h"

namespace vision {
namespace models {
using Options = torch::nn::Conv2dOptions;

9
10
11
12
13
14
15
16
17
18
19
20
21
int64_t make_divisible(
    double value,
    int64_t divisor,
    c10::optional<int64_t> min_value = {}) {
  if (!min_value.has_value())
    min_value = divisor;
  auto new_value = std::max(
      min_value.value(), (int64_t(value + divisor / 2) / divisor) * divisor);
  if (new_value < .9 * value)
    new_value += divisor;
  return new_value;
}

Shahriar's avatar
Shahriar committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
struct ConvBNReLUImpl : torch::nn::SequentialImpl {
  ConvBNReLUImpl(
      int64_t in_planes,
      int64_t out_planes,
      int64_t kernel_size = 3,
      int64_t stride = 1,
      int64_t groups = 1) {
    auto padding = (kernel_size - 1) / 2;

    push_back(torch::nn::Conv2d(Options(in_planes, out_planes, kernel_size)
                                    .stride(stride)
                                    .padding(padding)
                                    .groups(groups)
                                    .with_bias(false)));
    push_back(torch::nn::BatchNorm(out_planes));
    push_back(torch::nn::Functional(modelsimpl::relu6_));
  }

  torch::Tensor forward(torch::Tensor x) {
    return torch::nn::SequentialImpl::forward(x);
  }
};

TORCH_MODULE(ConvBNReLU);

struct MobileNetInvertedResidualImpl : torch::nn::Module {
  int64_t stride;
  bool use_res_connect;
  torch::nn::Sequential conv;

  MobileNetInvertedResidualImpl(
      int64_t input,
      int64_t output,
      int64_t stride,
      double expand_ratio)
      : stride(stride), use_res_connect(stride == 1 && input == output) {
    auto double_compare = [](double a, double b) {
      return double(std::abs(a - b)) < std::numeric_limits<double>::epsilon();
    };

62
    TORCH_CHECK(stride == 1 || stride == 2);
Shahriar's avatar
Shahriar committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    auto hidden_dim = int64_t(std::round(input * expand_ratio));

    if (!double_compare(expand_ratio, 1))
      conv->push_back(ConvBNReLU(input, hidden_dim, 1));

    conv->push_back(ConvBNReLU(hidden_dim, hidden_dim, 3, stride, hidden_dim));
    conv->push_back(torch::nn::Conv2d(
        Options(hidden_dim, output, 1).stride(1).padding(0).with_bias(false)));
    conv->push_back(torch::nn::BatchNorm(output));

    register_module("conv", conv);
  }

  torch::Tensor forward(torch::Tensor x) {
    if (use_res_connect)
      return x + conv->forward(x);
    return conv->forward(x);
  }
};

TORCH_MODULE(MobileNetInvertedResidual);

85
86
87
88
89
MobileNetV2Impl::MobileNetV2Impl(
    int64_t num_classes,
    double width_mult,
    std::vector<std::vector<int64_t>> inverted_residual_settings,
    int64_t round_nearest) {
Shahriar's avatar
Shahriar committed
90
91
92
93
  using Block = MobileNetInvertedResidual;
  int64_t input_channel = 32;
  int64_t last_channel = 1280;

94
95
96
97
98
99
100
101
102
103
104
105
  if (inverted_residual_settings.empty())
    inverted_residual_settings = {
        // t, c, n, s
        {1, 16, 1, 1},
        {6, 24, 2, 2},
        {6, 32, 3, 2},
        {6, 64, 4, 2},
        {6, 96, 3, 1},
        {6, 160, 3, 2},
        {6, 320, 1, 1},
    };

106
107
108
  TORCH_CHECK(
      inverted_residual_settings[0].size() == 4,
      "inverted_residual_settings should contain 4-element vectors");
109
110
111
112

  input_channel = make_divisible(input_channel * width_mult, round_nearest);
  this->last_channel =
      make_divisible(last_channel * std::max(1.0, width_mult), round_nearest);
Shahriar's avatar
Shahriar committed
113
114
115
  features->push_back(ConvBNReLU(3, input_channel, 3, 2));

  for (auto setting : inverted_residual_settings) {
116
117
    auto output_channel =
        make_divisible(setting[1] * width_mult, round_nearest);
Shahriar's avatar
Shahriar committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    for (int64_t i = 0; i < setting[2]; ++i) {
      auto stride = i == 0 ? setting[3] : 1;
      features->push_back(
          Block(input_channel, output_channel, stride, setting[0]));
      input_channel = output_channel;
    }
  }

  features->push_back(ConvBNReLU(input_channel, this->last_channel, 1));

  classifier->push_back(torch::nn::Dropout(0.2));
  classifier->push_back(torch::nn::Linear(this->last_channel, num_classes));

  register_module("features", features);
  register_module("classifier", classifier);

  for (auto& module : modules(/*include_self=*/false)) {
    if (auto M = dynamic_cast<torch::nn::Conv2dImpl*>(module.get())) {
137
138
      torch::nn::init::kaiming_normal_(
          M->weight, 0, torch::nn::init::FanMode::FanOut);
Shahriar's avatar
Shahriar committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
      if (M->options.with_bias())
        torch::nn::init::zeros_(M->bias);
    } else if (auto M = dynamic_cast<torch::nn::BatchNormImpl*>(module.get())) {
      torch::nn::init::ones_(M->weight);
      torch::nn::init::zeros_(M->bias);
    } else if (auto M = dynamic_cast<torch::nn::LinearImpl*>(module.get())) {
      torch::nn::init::normal_(M->weight, 0, 0.01);
      torch::nn::init::zeros_(M->bias);
    }
  }
}

torch::Tensor MobileNetV2Impl::forward(at::Tensor x) {
  x = features->forward(x);
  x = x.mean({2, 3});
  x = classifier->forward(x);
  return x;
}

} // namespace models
} // namespace vision