test_image.py 15.9 KB
Newer Older
1
import glob
2
3
import io
import os
4
import sys
5
import unittest
6
from pathlib import Path
7

8
import pytest
9
import numpy as np
10
11
import torch
from PIL import Image
12
13
import torchvision.transforms.functional as F
from common_utils import get_tmp_dir, needs_cuda, cpu_only
14
from _assert_utils import assert_equal
15

16
from torchvision.io.image import (
17
    decode_png, decode_jpeg, encode_jpeg, write_jpeg, decode_image, read_file,
18
    encode_png, write_png, write_file, ImageReadMode, read_image)
Francisco Massa's avatar
Francisco Massa committed
19

20
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
21
22
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
23
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, 'damaged_jpeg')
24
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
25
26
27
28
29
30
31
32
33
IS_WINDOWS = sys.platform in ('win32', 'cygwin')


def _get_safe_image_name(name):
    # Used when we need to change the pytest "id" for an "image path" parameter.
    # If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
    # and this creates issues when the test is running in a different machine than where it was collected
    # (typically, in fb internal infra)
    return name.split(os.path.sep)[-1]
34
35
36
37


def get_images(directory, img_ext):
    assert os.path.isdir(directory)
38
39
40
41
    image_paths = glob.glob(directory + f'/**/*{img_ext}', recursive=True)
    for path in image_paths:
        if path.split(os.sep)[-2] not in ['damaged_jpeg', 'jpeg_write']:
            yield path
42
43


44
45
46
47
48
49
50
51
52
53
54
55
56
def pil_read_image(img_path):
    with Image.open(img_path) as img:
        return torch.from_numpy(np.array(img))


def normalize_dimensions(img_pil):
    if len(img_pil.shape) == 3:
        img_pil = img_pil.permute(2, 0, 1)
    else:
        img_pil = img_pil.unsqueeze(0)
    return img_pil


57
class ImageTester(unittest.TestCase):
58
    def test_decode_jpeg(self):
59
        conversion = [(None, ImageReadMode.UNCHANGED), ("L", ImageReadMode.GRAY), ("RGB", ImageReadMode.RGB)]
60
        for img_path in get_images(IMAGE_ROOT, ".jpg"):
61
            for pil_mode, mode in conversion:
62
63
64
65
66
67
68
69
70
71
72
73
74
75
                with Image.open(img_path) as img:
                    is_cmyk = img.mode == "CMYK"
                    if pil_mode is not None:
                        if is_cmyk:
                            # libjpeg does not support the conversion
                            continue
                        img = img.convert(pil_mode)
                    img_pil = torch.from_numpy(np.array(img))
                    if is_cmyk:
                        # flip the colors to match libjpeg
                        img_pil = 255 - img_pil

                img_pil = normalize_dimensions(img_pil)
                data = read_file(img_path)
76
                img_ljpeg = decode_image(data, mode=mode)
77
78
79
80
81

                # Permit a small variation on pixel values to account for implementation
                # differences between Pillow and LibJPEG.
                abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
                self.assertTrue(abs_mean_diff < 2)
82

Francisco Massa's avatar
Francisco Massa committed
83
        with self.assertRaisesRegex(RuntimeError, "Expected a non empty 1-dimensional tensor"):
84
85
            decode_jpeg(torch.empty((100, 1), dtype=torch.uint8))

Francisco Massa's avatar
Francisco Massa committed
86
        with self.assertRaisesRegex(RuntimeError, "Expected a torch.uint8 tensor"):
87
            decode_jpeg(torch.empty((100,), dtype=torch.float16))
88
89
90
91

        with self.assertRaises(RuntimeError):
            decode_jpeg(torch.empty((100), dtype=torch.uint8))

92
93
    def test_damaged_images(self):
        # Test image with bad Huffman encoding (should not raise)
94
        bad_huff = read_file(os.path.join(DAMAGED_JPEG, 'bad_huffman.jpg'))
95
        try:
96
            _ = decode_jpeg(bad_huff)
97
98
99
100
101
102
103
        except RuntimeError:
            self.assertTrue(False)

        # Truncated images should raise an exception
        truncated_images = glob.glob(
            os.path.join(DAMAGED_JPEG, 'corrupt*.jpg'))
        for image_path in truncated_images:
104
            data = read_file(image_path)
105
            with self.assertRaises(RuntimeError):
106
                decode_jpeg(data)
107

108
    def test_decode_png(self):
109
110
        conversion = [(None, ImageReadMode.UNCHANGED), ("L", ImageReadMode.GRAY), ("LA", ImageReadMode.GRAY_ALPHA),
                      ("RGB", ImageReadMode.RGB), ("RGBA", ImageReadMode.RGB_ALPHA)]
111
        for img_path in get_images(FAKEDATA_DIR, ".png"):
112
            for pil_mode, mode in conversion:
113
114
115
116
                with Image.open(img_path) as img:
                    if pil_mode is not None:
                        img = img.convert(pil_mode)
                    img_pil = torch.from_numpy(np.array(img))
117

118
119
                img_pil = normalize_dimensions(img_pil)
                data = read_file(img_path)
120
                img_lpng = decode_image(data, mode=mode)
121
122
123
124
125
126
127
128

                tol = 0 if conversion is None else 1
                self.assertTrue(img_lpng.allclose(img_pil, atol=tol))

        with self.assertRaises(RuntimeError):
            decode_png(torch.empty((), dtype=torch.uint8))
        with self.assertRaises(RuntimeError):
            decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8))
129

130
131
132
133
134
135
136
137
138
139
140
    def test_encode_png(self):
        for img_path in get_images(IMAGE_DIR, '.png'):
            pil_image = Image.open(img_path)
            img_pil = torch.from_numpy(np.array(pil_image))
            img_pil = img_pil.permute(2, 0, 1)
            png_buf = encode_png(img_pil, compression_level=6)

            rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
            rec_img = torch.from_numpy(np.array(rec_img))
            rec_img = rec_img.permute(2, 0, 1)

141
            assert_equal(img_pil, rec_img)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

        with self.assertRaisesRegex(
                RuntimeError, "Input tensor dtype should be uint8"):
            encode_png(torch.empty((3, 100, 100), dtype=torch.float32))

        with self.assertRaisesRegex(
                RuntimeError, "Compression level should be between 0 and 9"):
            encode_png(torch.empty((3, 100, 100), dtype=torch.uint8),
                       compression_level=-1)

        with self.assertRaisesRegex(
                RuntimeError, "Compression level should be between 0 and 9"):
            encode_png(torch.empty((3, 100, 100), dtype=torch.uint8),
                       compression_level=10)

        with self.assertRaisesRegex(
                RuntimeError, "The number of channels should be 1 or 3, got: 5"):
            encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))

    def test_write_png(self):
162
163
164
165
166
167
168
169
170
171
172
173
        with get_tmp_dir() as d:
            for img_path in get_images(IMAGE_DIR, '.png'):
                pil_image = Image.open(img_path)
                img_pil = torch.from_numpy(np.array(pil_image))
                img_pil = img_pil.permute(2, 0, 1)

                filename, _ = os.path.splitext(os.path.basename(img_path))
                torch_png = os.path.join(d, '{0}_torch.png'.format(filename))
                write_png(img_pil, torch_png, compression_level=6)
                saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
                saved_image = saved_image.permute(2, 0, 1)

174
                assert_equal(img_pil, saved_image)
175

Francisco Massa's avatar
Francisco Massa committed
176
177
178
179
180
181
182
183
184
    def test_read_file(self):
        with get_tmp_dir() as d:
            fname, content = 'test1.bin', b'TorchVision\211\n'
            fpath = os.path.join(d, fname)
            with open(fpath, 'wb') as f:
                f.write(content)

            data = read_file(fpath)
            expected = torch.tensor(list(content), dtype=torch.uint8)
185
            assert_equal(data, expected)
Francisco Massa's avatar
Francisco Massa committed
186
187
188
189
190
191
            os.unlink(fpath)

        with self.assertRaisesRegex(
                RuntimeError, "No such file or directory: 'tst'"):
            read_file('tst')

192
193
194
195
196
197
198
199
200
    def test_read_file_non_ascii(self):
        with get_tmp_dir() as d:
            fname, content = '日本語(Japanese).bin', b'TorchVision\211\n'
            fpath = os.path.join(d, fname)
            with open(fpath, 'wb') as f:
                f.write(content)

            data = read_file(fpath)
            expected = torch.tensor(list(content), dtype=torch.uint8)
201
            assert_equal(data, expected)
202
203
            os.unlink(fpath)

Francisco Massa's avatar
Francisco Massa committed
204
205
206
207
208
209
210
211
212
213
214
215
    def test_write_file(self):
        with get_tmp_dir() as d:
            fname, content = 'test1.bin', b'TorchVision\211\n'
            fpath = os.path.join(d, fname)
            content_tensor = torch.tensor(list(content), dtype=torch.uint8)
            write_file(fpath, content_tensor)

            with open(fpath, 'rb') as f:
                saved_content = f.read()
            self.assertEqual(content, saved_content)
            os.unlink(fpath)

216
217
218
219
220
221
222
223
224
225
226
227
    def test_write_file_non_ascii(self):
        with get_tmp_dir() as d:
            fname, content = '日本語(Japanese).bin', b'TorchVision\211\n'
            fpath = os.path.join(d, fname)
            content_tensor = torch.tensor(list(content), dtype=torch.uint8)
            write_file(fpath, content_tensor)

            with open(fpath, 'rb') as f:
                saved_content = f.read()
            self.assertEqual(content, saved_content)
            os.unlink(fpath)

228

229
@needs_cuda
230
@pytest.mark.parametrize('img_path', [
231
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
232
233
    for jpeg_path in get_images(IMAGE_ROOT, ".jpg")
])
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
@pytest.mark.parametrize('mode', [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize('scripted', (False, True))
def test_decode_jpeg_cuda(mode, img_path, scripted):
    if 'cmyk' in img_path:
        pytest.xfail("Decoding a CMYK jpeg isn't supported")
    tester = ImageTester()
    data = read_file(img_path)
    img = decode_image(data, mode=mode)
    f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
    img_nvjpeg = f(data, mode=mode, device='cuda')

    # Some difference expected between jpeg implementations
    tester.assertTrue((img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2)


@needs_cuda
@pytest.mark.parametrize('cuda_device', ('cuda', 'cuda:0', torch.device('cuda')))
def test_decode_jpeg_cuda_device_param(cuda_device):
    """Make sure we can pass a string or a torch.device as device param"""
    data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
    decode_jpeg(data, device=cuda_device)


@needs_cuda
def test_decode_jpeg_cuda_errors():
    data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_jpeg(data.reshape(-1, 1), device='cuda')
    with pytest.raises(RuntimeError, match="input tensor must be on CPU"):
        decode_jpeg(data.to('cuda'), device='cuda')
    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
        decode_jpeg(data.to(torch.float), device='cuda')
    with pytest.raises(RuntimeError, match="Expected a cuda device"):
        torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, 'cpu')


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
@cpu_only
def test_encode_jpeg_errors():

    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))

    with pytest.raises(ValueError, match="Image quality should be a positive number "
                                         "between 1 and 100"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)

    with pytest.raises(ValueError, match="Image quality should be a positive number "
                                         "between 1 and 100"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))


def _collect_if(cond):
    # TODO: remove this once test_encode_jpeg_windows and test_write_jpeg_windows
    # are removed
    def _inner(test_func):
        if cond:
            return test_func
        else:
            return pytest.mark.dont_collect(test_func)
    return _inner


@cpu_only
@_collect_if(cond=IS_WINDOWS)
def test_encode_jpeg_windows():
    # This test is *wrong*.
    # It compares a torchvision-encoded jpeg with a PIL-encoded jpeg, but it
    # starts encoding the torchvision version from an image that comes from
    # decode_jpeg, which can yield different results from pil.decode (see
    # test_decode... which uses a high tolerance).
    # Instead, we should start encoding from the exact same decoded image, for a
    # valid comparison. This is done in test_encode_jpeg, but unfortunately
    # these more correct tests fail on windows (probably because of a difference
    # in libjpeg) between torchvision and PIL.
    # FIXME: make the correct tests pass on windows and remove this.
    for img_path in get_images(ENCODE_JPEG, ".jpg"):
        dirname = os.path.dirname(img_path)
        filename, _ = os.path.splitext(os.path.basename(img_path))
        write_folder = os.path.join(dirname, 'jpeg_write')
        expected_file = os.path.join(
            write_folder, '{0}_pil.jpg'.format(filename))
        img = decode_jpeg(read_file(img_path))

        with open(expected_file, 'rb') as f:
            pil_bytes = f.read()
            pil_bytes = torch.as_tensor(list(pil_bytes), dtype=torch.uint8)
        for src_img in [img, img.contiguous()]:
            # PIL sets jpeg quality to 75 by default
            jpeg_bytes = encode_jpeg(src_img, quality=75)
            assert_equal(jpeg_bytes, pil_bytes)


@cpu_only
@_collect_if(cond=IS_WINDOWS)
def test_write_jpeg_windows():
    # FIXME: Remove this eventually, see test_encode_jpeg_windows
    with get_tmp_dir() as d:
        for img_path in get_images(ENCODE_JPEG, ".jpg"):
            data = read_file(img_path)
            img = decode_jpeg(data)

            basedir = os.path.dirname(img_path)
            filename, _ = os.path.splitext(os.path.basename(img_path))
            torch_jpeg = os.path.join(
                d, '{0}_torch.jpg'.format(filename))
            pil_jpeg = os.path.join(
                basedir, 'jpeg_write', '{0}_pil.jpg'.format(filename))

            write_jpeg(img, torch_jpeg, quality=75)

            with open(torch_jpeg, 'rb') as f:
                torch_bytes = f.read()

            with open(pil_jpeg, 'rb') as f:
                pil_bytes = f.read()

            assert_equal(torch_bytes, pil_bytes)


@cpu_only
@_collect_if(cond=not IS_WINDOWS)
@pytest.mark.parametrize('img_path', [
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
    for jpeg_path in get_images(ENCODE_JPEG, ".jpg")
])
def test_encode_jpeg(img_path):
    img = read_image(img_path)

    pil_img = F.to_pil_image(img)
    buf = io.BytesIO()
    pil_img.save(buf, format='JPEG', quality=75)

    # pytorch can't read from raw bytes so we go through numpy
    pil_bytes = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    encoded_jpeg_pil = torch.as_tensor(pil_bytes)

    for src_img in [img, img.contiguous()]:
        encoded_jpeg_torch = encode_jpeg(src_img, quality=75)
        assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)


@cpu_only
@_collect_if(cond=not IS_WINDOWS)
@pytest.mark.parametrize('img_path', [
    pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path))
    for jpeg_path in get_images(ENCODE_JPEG, ".jpg")
])
def test_write_jpeg(img_path):
    with get_tmp_dir() as d:
        d = Path(d)
        img = read_image(img_path)
        pil_img = F.to_pil_image(img)

        torch_jpeg = str(d / 'torch.jpg')
        pil_jpeg = str(d / 'pil.jpg')

        write_jpeg(img, torch_jpeg, quality=75)
        pil_img.save(pil_jpeg, quality=75)

        with open(torch_jpeg, 'rb') as f:
            torch_bytes = f.read()

        with open(pil_jpeg, 'rb') as f:
            pil_bytes = f.read()

        assert_equal(torch_bytes, pil_bytes)


411
412
if __name__ == '__main__':
    unittest.main()