train.py 14.9 KB
Newer Older
1
2
import argparse
import warnings
3
from math import ceil
4
5
6
from pathlib import Path

import torch
7
import torchvision.models.optical_flow
8
9
10
import utils
from presets import OpticalFlowPresetTrain, OpticalFlowPresetEval
from torchvision.datasets import KittiFlow, FlyingChairs, FlyingThings3D, Sintel, HD1K
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

def get_train_dataset(stage, dataset_root):
    if stage == "chairs":
        transforms = OpticalFlowPresetTrain(crop_size=(368, 496), min_scale=0.1, max_scale=1.0, do_flip=True)
        return FlyingChairs(root=dataset_root, split="train", transforms=transforms)
    elif stage == "things":
        transforms = OpticalFlowPresetTrain(crop_size=(400, 720), min_scale=-0.4, max_scale=0.8, do_flip=True)
        return FlyingThings3D(root=dataset_root, split="train", pass_name="both", transforms=transforms)
    elif stage == "sintel_SKH":  # S + K + H as from paper
        crop_size = (368, 768)
        transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.2, max_scale=0.6, do_flip=True)

        things_clean = FlyingThings3D(root=dataset_root, split="train", pass_name="clean", transforms=transforms)
        sintel = Sintel(root=dataset_root, split="train", pass_name="both", transforms=transforms)

        kitti_transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.3, max_scale=0.5, do_flip=True)
        kitti = KittiFlow(root=dataset_root, split="train", transforms=kitti_transforms)

        hd1k_transforms = OpticalFlowPresetTrain(crop_size=crop_size, min_scale=-0.5, max_scale=0.2, do_flip=True)
        hd1k = HD1K(root=dataset_root, split="train", transforms=hd1k_transforms)

        # As future improvement, we could probably be using a distributed sampler here
        # The distribution is S(.71), T(.135), K(.135), H(.02)
        return 100 * sintel + 200 * kitti + 5 * hd1k + things_clean
    elif stage == "kitti":
        transforms = OpticalFlowPresetTrain(
            # resize and crop params
            crop_size=(288, 960),
            min_scale=-0.2,
            max_scale=0.4,
            stretch_prob=0,
            # flip params
            do_flip=False,
            # jitter params
            brightness=0.3,
            contrast=0.3,
            saturation=0.3,
            hue=0.3 / 3.14,
            asymmetric_jitter_prob=0,
        )
        return KittiFlow(root=dataset_root, split="train", transforms=transforms)
    else:
        raise ValueError(f"Unknown stage {stage}")


@torch.no_grad()
58
def _evaluate(model, args, val_dataset, *, padder_mode, num_flow_updates=None, batch_size=None, header=None):
59
60
61
62
63
    """Helper function to compute various metrics (epe, etc.) for a model on a given dataset.

    We process as many samples as possible with ddp, and process the rest on a single worker.
    """
    batch_size = batch_size or args.batch_size
64
    device = torch.device(args.device)
65
66
67

    model.eval()

68
69
70
71
72
    if args.distributed:
        sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
    else:
        sampler = torch.utils.data.SequentialSampler(val_dataset)

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        sampler=sampler,
        batch_size=batch_size,
        pin_memory=True,
        num_workers=args.num_workers,
    )

    num_flow_updates = num_flow_updates or args.num_flow_updates

    def inner_loop(blob):
        if blob[0].dim() == 3:
            # input is not batched so we add an extra dim for consistency
            blob = [x[None, :, :, :] if x is not None else None for x in blob]

        image1, image2, flow_gt = blob[:3]
        valid_flow_mask = None if len(blob) == 3 else blob[-1]

91
        image1, image2 = image1.to(device), image2.to(device)
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

        padder = utils.InputPadder(image1.shape, mode=padder_mode)
        image1, image2 = padder.pad(image1, image2)

        flow_predictions = model(image1, image2, num_flow_updates=num_flow_updates)
        flow_pred = flow_predictions[-1]
        flow_pred = padder.unpad(flow_pred).cpu()

        metrics, num_pixels_tot = utils.compute_metrics(flow_pred, flow_gt, valid_flow_mask)

        # We compute per-pixel epe (epe) and per-image epe (called f1-epe in RAFT paper).
        # per-pixel epe: average epe of all pixels of all images
        # per-image epe: average epe on each image independently, then average over images
        for name in ("epe", "1px", "3px", "5px", "f1"):  # f1 is called f1-all in paper
            logger.meters[name].update(metrics[name], n=num_pixels_tot)
        logger.meters["per_image_epe"].update(metrics["epe"], n=batch_size)

    logger = utils.MetricLogger()
    for meter_name in ("epe", "1px", "3px", "5px", "per_image_epe", "f1"):
        logger.add_meter(meter_name, fmt="{global_avg:.4f}")

    num_processed_samples = 0
    for blob in logger.log_every(val_loader, header=header, print_freq=None):
        inner_loop(blob)
        num_processed_samples += blob[0].shape[0]  # batch size

118
119
120
121
122
123
124
125
126
    if args.distributed:
        num_processed_samples = utils.reduce_across_processes(num_processed_samples)
        print(
            f"Batch-processed {num_processed_samples} / {len(val_dataset)} samples. "
            "Going to process the remaining samples individually, if any."
        )
        if args.rank == 0:  # we only need to process the rest on a single worker
            for i in range(num_processed_samples, len(val_dataset)):
                inner_loop(val_dataset[i])
127

128
        logger.synchronize_between_processes()
129
130
131
132

    print(header, logger)


133
def evaluate(model, args):
134
    val_datasets = args.val_dataset or []
135

136
137
138
139
140
141
142
143
144
145
146
147
    if args.weights and args.test_only:
        weights = torchvision.models.get_weight(args.weights)
        trans = weights.transforms()

        def preprocessing(img1, img2, flow, valid_flow_mask):
            img1, img2 = trans(img1, img2)
            if flow is not None and not isinstance(flow, torch.Tensor):
                flow = torch.from_numpy(flow)
            if valid_flow_mask is not None and not isinstance(valid_flow_mask, torch.Tensor):
                valid_flow_mask = torch.from_numpy(valid_flow_mask)
            return img1, img2, flow, valid_flow_mask

148
149
150
    else:
        preprocessing = OpticalFlowPresetEval()

151
152
153
154
    for name in val_datasets:
        if name == "kitti":
            # Kitti has different image sizes so we need to individually pad them, we can't batch.
            # see comment in InputPadder
155
            if args.batch_size != 1 and (not args.distributed or args.rank == 0):
156
157
158
159
                warnings.warn(
                    f"Batch-size={args.batch_size} was passed. For technical reasons, evaluating on Kitti can only be done with a batch-size of 1."
                )

160
            val_dataset = KittiFlow(root=args.dataset_root, split="train", transforms=preprocessing)
161
            _evaluate(
162
163
164
165
166
                model, args, val_dataset, num_flow_updates=24, padder_mode="kitti", header="Kitti val", batch_size=1
            )
        elif name == "sintel":
            for pass_name in ("clean", "final"):
                val_dataset = Sintel(
167
                    root=args.dataset_root, split="train", pass_name=pass_name, transforms=preprocessing
168
                )
169
                _evaluate(
170
171
172
173
174
175
176
177
178
179
180
                    model,
                    args,
                    val_dataset,
                    num_flow_updates=32,
                    padder_mode="sintel",
                    header=f"Sintel val {pass_name}",
                )
        else:
            warnings.warn(f"Can't validate on {val_dataset}, skipping.")


181
def train_one_epoch(model, optimizer, scheduler, train_loader, logger, args):
182
    device = torch.device(args.device)
183
184
185
186
    for data_blob in logger.log_every(train_loader):

        optimizer.zero_grad()

187
        image1, image2, flow_gt, valid_flow_mask = (x.to(device) for x in data_blob)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        flow_predictions = model(image1, image2, num_flow_updates=args.num_flow_updates)

        loss = utils.sequence_loss(flow_predictions, flow_gt, valid_flow_mask, args.gamma)
        metrics, _ = utils.compute_metrics(flow_predictions[-1], flow_gt, valid_flow_mask)

        metrics.pop("f1")
        logger.update(loss=loss, **metrics)

        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)

        optimizer.step()
        scheduler.step()


def main(args):
    utils.setup_ddp(args)
206
    args.test_only = args.train_dataset is None
207

208
209
210
211
    if args.distributed and args.device == "cpu":
        raise ValueError("The device must be cuda if we want to run in distributed mode using torchrun")
    device = torch.device(args.device)

212
    model = torchvision.models.optical_flow.__dict__[args.model](weights=args.weights)
213

214
215
216
217
218
219
220
    if args.distributed:
        model = model.to(args.local_rank)
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
        model_without_ddp = model.module
    else:
        model.to(device)
        model_without_ddp = model
221
222

    if args.resume is not None:
223
224
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
225

226
    if args.test_only:
227
228
229
        # Set deterministic CUDNN algorithms, since they can affect epe a fair bit.
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
230
        evaluate(model, args)
231
232
233
234
        return

    print(f"Parameter Count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    train_dataset = get_train_dataset(args.train_dataset, args.dataset_root)

    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, eps=args.adamw_eps)

    scheduler = torch.optim.lr_scheduler.OneCycleLR(
        optimizer=optimizer,
        max_lr=args.lr,
        epochs=args.epochs,
        steps_per_epoch=ceil(len(train_dataset) / (args.world_size * args.batch_size)),
        pct_start=0.05,
        cycle_momentum=False,
        anneal_strategy="linear",
    )

    if args.resume is not None:
        optimizer.load_state_dict(checkpoint["optimizer"])
        scheduler.load_state_dict(checkpoint["scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
    else:
        args.start_epoch = 0

256
257
258
259
260
261
    torch.backends.cudnn.benchmark = True

    model.train()
    if args.freeze_batch_norm:
        utils.freeze_batch_norm(model.module)

262
263
264
265
    if args.distributed:
        sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True, drop_last=True)
    else:
        sampler = torch.utils.data.RandomSampler(train_dataset)
266
267
268
269
270
271
272
273
274
275
276
277

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        sampler=sampler,
        batch_size=args.batch_size,
        pin_memory=True,
        num_workers=args.num_workers,
    )

    logger = utils.MetricLogger()

    done = False
278
    for current_epoch in range(args.start_epoch, args.epochs):
279
        print(f"EPOCH {current_epoch}")
280
281
282
        if args.distributed:
            # needed on distributed mode, otherwise the data loading order would be the same for all epochs
            sampler.set_epoch(current_epoch)
283

284
        train_one_epoch(
285
286
287
288
289
290
291
292
293
294
295
            model=model,
            optimizer=optimizer,
            scheduler=scheduler,
            train_loader=train_loader,
            logger=logger,
            args=args,
        )

        # Note: we don't sync the SmoothedValues across processes, so the printed metrics are just those of rank 0
        print(f"Epoch {current_epoch} done. ", logger)

296
297
298
299
300
301
302
303
304
305
        if not args.distributed or args.rank == 0:
            checkpoint = {
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "epoch": current_epoch,
                "args": args,
            }
            torch.save(checkpoint, Path(args.output_dir) / f"{args.name}_{current_epoch}.pth")
            torch.save(checkpoint, Path(args.output_dir) / f"{args.name}.pth")
306
307

        if current_epoch % args.val_freq == 0 or done:
308
            evaluate(model, args)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            model.train()
            if args.freeze_batch_norm:
                utils.freeze_batch_norm(model.module)


def get_args_parser(add_help=True):
    parser = argparse.ArgumentParser(add_help=add_help, description="Train or evaluate an optical-flow model.")
    parser.add_argument(
        "--name",
        default="raft",
        type=str,
        help="The name of the experiment - determines the name of the files where weights are saved.",
    )
    parser.add_argument(
        "--output-dir", default="checkpoints", type=str, help="Output dir where checkpoints will be stored."
    )
    parser.add_argument(
        "--resume",
        type=str,
        help="A path to previously saved weights. Used to re-start training from, or evaluate a pre-saved model.",
    )

    parser.add_argument("--num-workers", type=int, default=12, help="Number of workers for the data loading part.")

    parser.add_argument(
        "--train-dataset",
        type=str,
        help="The dataset to use for training. If not passed, only validation is performed (and you probably want to pass --resume).",
    )
    parser.add_argument("--val-dataset", type=str, nargs="+", help="The dataset(s) to use for validation.")
    parser.add_argument("--val-freq", type=int, default=2, help="Validate every X epochs")
340
341
    parser.add_argument("--epochs", type=int, default=20, help="The total number of epochs to train.")
    parser.add_argument("--batch-size", type=int, default=2)
342
343
344
345
346
347
348
349
350

    parser.add_argument("--lr", type=float, default=0.00002, help="Learning rate for AdamW optimizer")
    parser.add_argument("--weight-decay", type=float, default=0.00005, help="Weight decay for AdamW optimizer")
    parser.add_argument("--adamw-eps", type=float, default=1e-8, help="eps value for AdamW optimizer")

    parser.add_argument(
        "--freeze-batch-norm", action="store_true", help="Set BatchNorm modules of the model in eval mode."
    )

351
352
353
    parser.add_argument(
        "--model", type=str, default="raft_large", help="The name of the model to use - either raft_large or raft_small"
    )
354
    # TODO: resume and weights should be in an exclusive arg group
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

    parser.add_argument(
        "--num_flow_updates",
        type=int,
        default=12,
        help="number of updates (or 'iters') in the update operator of the model.",
    )

    parser.add_argument("--gamma", type=float, default=0.8, help="exponential weighting for loss. Must be < 1.")

    parser.add_argument("--dist-url", default="env://", help="URL used to set up distributed training")

    parser.add_argument(
        "--dataset-root",
        help="Root folder where the datasets are stored. Will be passed as the 'root' parameter of the datasets.",
        required=True,
    )

373
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load.")
374
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu, Default: cuda)")
375

376
377
378
379
380
381
382
    return parser


if __name__ == "__main__":
    args = get_args_parser().parse_args()
    Path(args.output_dir).mkdir(exist_ok=True)
    main(args)