train.py 6.56 KB
Newer Older
1
2
3
4
5
6
import os

import torch
import torchvision.transforms as transforms
from loss import TripletMarginLoss
from model import EmbeddingNet
7
8
9
10
from sampler import PKSampler
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_freq):
    model.train()
    running_loss = 0
    running_frac_pos_triplets = 0
    for i, data in enumerate(data_loader):
        optimizer.zero_grad()
        samples, targets = data[0].to(device), data[1].to(device)

        embeddings = model(samples)

        loss, frac_pos_triplets = criterion(embeddings, targets)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        running_frac_pos_triplets += float(frac_pos_triplets)

        if i % print_freq == print_freq - 1:
            i += 1
            avg_loss = running_loss / print_freq
            avg_trip = 100.0 * running_frac_pos_triplets / print_freq
34
            print(f"[{epoch:d}, {i:d}] | loss: {avg_loss:.4f} | % avg hard triplets: {avg_trip:.2f}%")
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
            running_loss = 0
            running_frac_pos_triplets = 0


def find_best_threshold(dists, targets, device):
    best_thresh = 0.01
    best_correct = 0
    for thresh in torch.arange(0.0, 1.51, 0.01):
        predictions = dists <= thresh.to(device)
        correct = torch.sum(predictions == targets.to(device)).item()
        if correct > best_correct:
            best_thresh = thresh
            best_correct = correct

    accuracy = 100.0 * best_correct / dists.size(0)

    return best_thresh, accuracy


54
@torch.inference_mode()
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def evaluate(model, loader, device):
    model.eval()
    embeds, labels = [], []
    dists, targets = None, None

    for data in loader:
        samples, _labels = data[0].to(device), data[1]
        out = model(samples)
        embeds.append(out)
        labels.append(_labels)

    embeds = torch.cat(embeds, dim=0)
    labels = torch.cat(labels, dim=0)

    dists = torch.cdist(embeds, embeds)

    labels = labels.unsqueeze(0)
    targets = labels == labels.t()

    mask = torch.ones(dists.size()).triu() - torch.eye(dists.size(0))
    dists = dists[mask == 1]
    targets = targets[mask == 1]

    threshold, accuracy = find_best_threshold(dists, targets, device)

80
    print(f"accuracy: {accuracy:.3f}%, threshold: {threshold:.2f}")
81
82
83


def save(model, epoch, save_dir, file_name):
84
    file_name = "epoch_" + str(epoch) + "__" + file_name
85
86
87
88
89
    save_path = os.path.join(save_dir, file_name)
    torch.save(model.state_dict(), save_path)


def main(args):
90
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
91
92
93
94
95
96
97

    if args.use_deterministic_algorithms:
        torch.backends.cudnn.benchmark = False
        torch.use_deterministic_algorithms(True)
    else:
        torch.backends.cudnn.benchmark = True

98
99
100
101
102
103
104
105
106
107
108
109
110
    p = args.labels_per_batch
    k = args.samples_per_label
    batch_size = p * k

    model = EmbeddingNet()
    if args.resume:
        model.load_state_dict(torch.load(args.resume))

    model.to(device)

    criterion = TripletMarginLoss(margin=args.margin)
    optimizer = Adam(model.parameters(), lr=args.lr)

111
    transform = transforms.Compose(
112
113
114
115
116
117
        [
            transforms.Lambda(lambda image: image.convert("RGB")),
            transforms.Resize((224, 224)),
            transforms.PILToTensor(),
            transforms.ConvertImageDtype(torch.float),
        ]
118
    )
119
120
121
122
123
124
125
126
127
128
129
130

    # Using FMNIST to demonstrate embedding learning using triplet loss. This dataset can
    # be replaced with any classification dataset.
    train_dataset = FashionMNIST(args.dataset_dir, train=True, transform=transform, download=True)
    test_dataset = FashionMNIST(args.dataset_dir, train=False, transform=transform, download=True)

    # targets is a list where the i_th element corresponds to the label of i_th dataset element.
    # This is required for PKSampler to randomly sample from exactly p classes. You will need to
    # construct targets while building your dataset. Some datasets (such as ImageFolder) have a
    # targets attribute with the same format.
    targets = train_dataset.targets.tolist()

131
132
133
134
    train_loader = DataLoader(
        train_dataset, batch_size=batch_size, sampler=PKSampler(targets, p, k), num_workers=args.workers
    )
    test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.workers)
135

136
137
138
139
140
141
142
    if args.test_only:
        # We disable the cudnn benchmarking because it can noticeably affect the accuracy
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
        evaluate(model, test_loader, device)
        return

143
    for epoch in range(1, args.epochs + 1):
144
        print("Training...")
145
146
        train_epoch(model, optimizer, criterion, train_loader, device, epoch, args.print_freq)

147
        print("Evaluating...")
148
149
        evaluate(model, test_loader, device)

150
151
        print("Saving...")
        save(model, epoch, args.save_dir, "ckpt.pth")
152
153
154
155


def parse_args():
    import argparse
156
157
158

    parser = argparse.ArgumentParser(description="PyTorch Embedding Learning")

159
    parser.add_argument("--dataset-dir", default="/tmp/fmnist/", type=str, help="FashionMNIST dataset directory path")
160
161
162
163
    parser.add_argument(
        "-p", "--labels-per-batch", default=8, type=int, help="Number of unique labels/classes per batch"
    )
    parser.add_argument("-k", "--samples-per-label", default=8, type=int, help="Number of samples per label in a batch")
164
165
166
167
    parser.add_argument("--eval-batch-size", default=512, type=int, help="batch size for evaluation")
    parser.add_argument("--epochs", default=10, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument("-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers")
    parser.add_argument("--lr", default=0.0001, type=float, help="initial learning rate")
168
    parser.add_argument("--margin", default=0.2, type=float, help="Triplet loss margin")
169
170
171
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
    parser.add_argument("--save-dir", default=".", type=str, help="Model save directory")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
172
173
174
175
176
177
178
179
180
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )
181
182
183
184

    return parser.parse_args()


185
if __name__ == "__main__":
186
187
    args = parse_args()
    main(args)